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Description of the mechanism ~*~* — n(1S5,25)

Babiarz, Goncalves, Pasechnik, Schafer and Szczurek,
Phys. Rev. D100, 054018 (2019).

Mo (7 (@)1 (d2) = 1) = 47 (=12 42 F(QF, Q3)
Light-front representation of the transition form factor:

dzd?k

z(1 — z)1673 Wz k)

(@2, Q2) = &2+ /Noam, /
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{ (k—(1—2)a)? +2(1—2)a] + m2  (k+20,)? + 2(1 — z)q] + m?



Nonrelativistic quarkonium wave functions
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) Radial momentum-space wave function for different potentials.
Radial spatial wave function are obtained by solving the Schrodinger

equation.

J. Cepila, J. Nemchik, M. Krelina and R. Pasechnik, arXiv:1901.02664 [hep-ph].
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Light-front wave functions
We treat the 7. as a bound state of a charm quark and
antiquark, assuming that the dominant contribution comes
from the cc component in the Fock-state expansion:

iz 2
nei Py, P = Z K sl p)E (1= 2P b)) + -

\/_ z(1 — zl(fvrr3 AX
[N IPN ¢

1

Here the c-quark and c-antiquark carry a fraction z and 1 — z
respectively of the 7.'s plus-momentum. The light-front
helicites of quark and antiquark are denoted by A, X, and take
values £1. The transverse momenta of quark and antiquark

are
p.=k+zP, p.=—-k+(1-2)P. (2)

The light-cone representation is obtained by Terentev's
prescription valid for weakly bound systems.



Light-front wave functions
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F(0,0) transition for both on-shell photons

dzd?k P(z,k)

F(0,0) = Nc4me -
( ) e camc 2(1—2)167'('3 k2+m§7

F(0,0) is related to the two-photon decay width by the formula:

M(ne = 77) = 7 %emMs, [F(0,0).

F(0,0) can be rewrite in the terms of radial momentum space wave function u(p):

o s2me [T dppu(p) 148
F(0,0)_ec 2Nc - ,—M3 P +m2) 26 g(l—ﬁ) )

In the non-relativistic (NR) limit, where p?/m2 < 1,3 < 1, and 2mc = Mcz = My,
we obtain

F(0,0) = €/NevV2——

/ 4 R(0)
e I,
where 3 = —=2——| the velocity v/c of the quark in the c¢ cms-frame and R(0)

\/ P2m?

radial wave function at the origin.

dpp u(p) = €2/ Ne



F(0,0) for both on-shell photons

Transition form factor |F(0,0)| for 7c(1S) at Q% = Q2 =0.

potential type me [GeV]  |F(0,0)] [GeV 1] M~ [keV] fre [GeV]
harmonic oscillator 1.4 0.051 2.89 0.2757
logarithmic 15 0.052 2.95 0.3373
power-like 1.334 0.059 3.87 0.3074
Cornell 1.84 0.039 1.69 0.3726
Buchmiiller-Tye 1.48 0.052 2.95 0.3276
experiment - 0.067 + 0.003 [1] 5.1 +£0.4[1] 0.335 £ 0.075 [2]

[1] M. Tanabashi et al. [Particle Data Group], Phys. Rev. D 98, no.3, 030001 (2018).
[2] K. W. Edwards et al. [CLEO Collaboration], Phys. Rev. Lett. 86, 30 (2001) [hep-ex/0007012].

R(0) and yy-width for 7c(1S) derived in the non-relativistic limit.

potential type R(0)[GeV3/2] Ty [keV] M =M, [y [keV] M = 2m,
harmonic oscillator 0.6044 5.1848 5.8815
logarithmic 0.8919 11.290 11.157
power-like 0.7620 8.2412 10.297
Cornell 1.2065 20.660 13.568
Buchmiiller-Tye 0.8899 11.240 11.409

1
1 vV Nc4dmc
foep(z, pu2) = mlﬁT / d’kO(u3 — k?) (2, k) and/ dz p(z, u2) =1
0



F(0,0) for both on-shell photons

Transition form factor |F(0,0)]| for 7¢(2S) at Q% = Q2 =0.

potential type m:[GeV]  |F(0,0)][GeV 1] I~ [keV] foe [GeV]
harmonic oscillator 1.4 0.03492 2.454 0.2530

logarithmic 15 0.02403 1.162 0.1970

power-like 1.334 0.02775 1.549 0.1851

Cornell 1.84 0.02159 0.938 0.2490

Buchmiiller-Tye 1.48 0.02687 1.453 0.2149

experiment [1] - 0.03266 + 0.01209  2.147 + 1.589

[1] M. Tanabashi et al. [Particle Data Group], Phys. Rev. D 98, no.3, 030001 (2018).

R(0) and y~-width for 7(2S) derived in the non-relativistic limit.

potential type R(0) [GeV3/2] Ty [keV] M =M, [y [keV] M = 2m,
harmonic oscillator 0.7402 5.2284 8.8214
logarithmic 0.6372 3.8745 5.6946
power-like 0.5699 3.0993 5.7594
Cornell 0.9633 8.8550 8.6493

Buchmiiller-Tye 0.7185 4.9263 7.4374




Normalized transition form factor F(Q?,0)

F(Q?,0)/F(0,0)
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Normalized transition form factor F(Q?,0) as a function of photon
virtuality @2. The BaBar data are shown for comparison.

J. P. Lees et al. [BaBar Collaboration], Phys. Rev. D 81, 052010 (2010) [arXiv:1002.3000 [hep-ex]].



Transition form factor F(Q?, Q2) for
7Y = 1e(15,25)
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Transition form factor for 7:(1S) and 7-(2S) for Buchmiiller-Tye
potential. The F(Q?, Q2) should obey Bose symmetry.
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Some comments

In order to estimate the factorization breaking in the transition

form factor we will also estimate the normalized form factor,

defined by:

F(Q5, Q3) o)
F(0,0)

which nicely quantifies the deviation from point-like coupling.

A popular model for the transition form factor is based on the

vector meson dominance approach and reads:

,:_(Q% Q%) =

2 2
Mio My

QF + Mi/\u Q5+ Mﬁ/\u .

It features a factorized dependence on the photon virtualities,

In our analysis, we will quantify the factorization breaking of

the transition form factor by estimating the quantity defined

by:

F(QF, Q3) = (4)

F(Q} @)
(Q2,0)F(0,Q5)

R(QF, @) = 2 (5)



Factorization breaking
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Transition form factor F(

w, Q?)

F.Q%)(GeV

FQ)(GeVY, n (29)
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Asymptotic behaviour of Q*F(Q?,0)

The rate of approaching of @*F(Q?) to its asymptotic value predicted by
Brodsky and Lepage

G. P. Lepage and S. J. Brodsky, Phys. Rev. D 22, 2157 (1980).

Q*F(Q?) — &f,., while Q> — o0

oscillator -~~~ logarithmic oscillator ---.- logarithmic
....... power-like — . Cormell wueueen. poWer-like — . Comell
Buchmuller-Tye — .. Buchmuller-Tye

Q*F(Q)0) (GeV)

f] S

Q?F(@?,0) as a function of photon virtuality @. The horizontal lines
8,. are shown for reference.



Distribution amplitudes and quarkonium wave
functions
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Distribution amplitudes for different wave functions for nc (1S) (left panel) and for 7.
(2S) (right panel).
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1
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The evolution of the distribution amplitudes

The distribution amplitudes can be expanded in terms of the Gegenbauer

C,?/2 polynomials:
o(z, 12) = 62(1 — 2) (1 +a(2) (22 - 1) + ) ,

and then extract the coefficients:

_2(2n+3) ! )
an(po) = )0 +2) /0 dz(z, 110) C7/?(22 — 1),

as(p)
O‘S(NO)

an() = ana) - }W .

Extracted coefficients an(1g), for the Buchmiiller-Tye potential
n an(po) 1c(1S)  an(po) nc(25)

2 -0.284 -0.0765
4 0.0635 -0.1627
6 -0.008157 0.128
8 -0.000619 -0.049
10 0.000216 0.0088




The evolution of the distribution amplitudes
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Inclusive production of 7). quarkonia in

proton-proton collisions
The diagram below illustrates the situation adequate for the
kr-factorization calculations used in the present paper.

p
ne(15,28)

D

Rysunek: Generic diagram for the inclusive process of 7.(1S) or
1¢(2S) production in pp scattering via two gluons fusion.

|. Babiarz, R. Pasechnik, W. Schafer and A. Szczurek,
arXiv:1911.03403



k:-factorization approach

The inclusive cross section for n.-production via the 2 — 1
gluon-gluon fusion mode is obtained from

o2 d. o2
rad) | 2 [ 225 ——TM[ do(2 — 1). ©)
7rq1 7rq2 2x1x25

The unintegrated gluon distributions are normalized such,
that in the DGLAP-limit

oxg(x, q°)

F(x,q°) = Dlog °

(7)

Let us denote the four-momentum of the n. by P. It can be
parametrized as:

(""L y mLeiy

P=(Pr PP = (T,

P)s (®)



k:-factorization approach

The phase-space element is
d*P
(2m)?

do(2 — 1) = 27)*0W(q1 + g2 — P) (P> —=m?) (9)

The gluon four momenta are written as

a1 = (ql-i-a 07 ql) , Q2 = (Oa ax—, q2) ) (10)
with
S S
qi+ :Xl\/;u G- = X2 5" (11)
We can then calculate the phase-space element as

db(2 — 1) = 2n8(qr, — P1)6(aa— — P_)6P(ay + a, — P)dPLdP_d’P 6(2PLP_ — P* — ).
(12)

This gives
2 m _ dP.
dB2 1) = 2w = bq - %ey)é(xz - Tie 6@ (q, + g5 — P)iﬁp
= g — T )s(g - T e)5D (g, + a5 — P)dyaP. (13)

s Vs Vs



k:-factorization approach
We therefore obtain for the inclusive cross section

do d%q, ’ d%q, 2 () T —
— = — F(x1, — F(x, é +q, — P) ——— M|, 14
dyd?P / "”7% (1, q1) 7“13 (%2, a3) (a1 + a2 ) (xlxzs)z‘ \ (14)

where the momentum fractions x; » of gluons are
X1 = —ey, Xy = —e Y. (15)
The off-shell color singlet matrix element is written in terms of

the Feynman amplitude as (we restore the color-indices):

.
q,, 4 q14+ 92— _ X1 XS _
ab _ 21 ap  d14+92— 4 ab 1X2 + ab
= = My M, = mng MG, - (16)
laillaz| la1llaz] la1llaz]

Then, we obtain for the cross section

do d’q, 2 d’qy 2 §(2) A P———
—— = | —F(x, — F(x,q3) 6 +q, — P)—=|nfin; M , 17
4yd2P / et (>, a1) dt (2, @) 87y + a2 = P) I, My (1)



k:-factorization approach
The CS matrix element squared averaged over color is

—\ 1 B
[nfnz M, | = m z; |n:nuMZ?,\ ) (18)
(o} a,
The matrix element has the form
":";Mibu = drag(=ila, ‘12] ] 2

1 1
47ro¢5(71)56ab

/e
It is related to the v*v*n, transition formfactor through the
relation

la1, 421 (a3, 43) (19)

F(Q2, Q) = e\/N, I(q%, a3). (20)

The vector product [q;, 5] is defined as

(91, 9] = a1 a5 — a1 a5 = |qyl|qy] sin(é1 — ¢2) . (21)



k:-factorization approach
Then, the averaged matrix element squared becomes

_72 1

|”Z”uMuu| = 167° aS4N (g1, q2] (Q1,¢I2 Zéabéab
= 4 llay ;] (g )P (22)
- ™ aSNC(Ng—].) q1,49> qi,49;

This leads to our final result:

—]—'x —]—'x 5@ + 91,9 Iq q
dyd2P / 1q1/ 2q2) q1 q — ) Ne(V2 — )\[1 o] (a7, 2)\

In real calculation we take ;7 = m?% and for renormalization
scale(s)

o — as(max(mf, gi1))as(max(mi. a¢5)) - (23)



Normalization of the g*g*n.(1S5,2S) form factors

From the proportionality of the g*g*n. and ~v*v*n. vertices to
the leading order (LO), we obtain, that at LO:

% )2 fLo(me — 7)., (24)

where the LO v width is related to the transition form factor
for vanishing virtualities through

™
Mo(ne —1v) = ZaimMSCIF(O, 0)°. (25)

At NLO, the expressions for the widths read (see Lansberg et

al.)

20 — 72 as)

3 ™

FLo(ne — v7v) (1 -

M(ne — ~vv)

Fne—gg) = TLo(ne — &8) (1 +4.8 %) (26)



Normalization and decay widths

In order to control the model uncertainty on the normalization,
one may want to adjust its value F(0,0) to the measured
decay width. Here we face the ambiguity of fitting either to
the hadronic or to the vy width. As there are no other known
radiative decays besides v, one may try to identify the
gg-width with the total (hadronic) width.

In Tables on next pages, we show the values of |F(0,0)|
obtained in three different ways.

In the first table we show the result extracted from the total
decay width. Here a; = 0.26, which is appropriate to our
choice of the renormalization scale in the production
amplitudes.

In the second table we extract |F(0,0)| from the radiative
decay width in two different ways. The first result is obtained
based on LO relation using the experimental value for

['(ne — ~y) on the left hand side, while the second one uses
the NLO relation.



Decay widths

Tablica: Total decay widths as well as |F(0,0)| obtained from [ ;¢
using the next-to-leading order approximation.

Experimental values | Derived from Eq.(26)
[ tot (MeV) |F(0, 0)|gg[GeV_1]

n:(1S) 31.9+0.7 0.119£0.001

ne(2S) | 11.3+3.2+2.9 0.053:0.010




Decay widths

Tablica: Radiative decay widths as well as |F(0, 0)| obtained from
I,y using leading order and next-to-leading order approximation.

Experimental values

Derived from Eq.(25)

Derived from Eq.(26)

Ty (keV) |F(0,0)[[Gev "] [F(0,0)|[GevV 1]
nc(15) 5.0 £0.4 0.06740.003 0.07940.003
nc(25) | 1.9 413-107% T, o5 0.03340.012 0.0380.014




Extracting F(0,0), a comment

We observe a substantial difference between the two different
extractions of |F(0,0)|. While in the 7.(2S) case, the error
bars are too large to claim an inconsistency, the situation for
the 7(1S) is not satisfactory.

This may hint at an insufficiency of the potential model
treatment of the 7).. Possible solutions:

admixture of light hadron states (Shifman),

a mixing with a pseudoscalar glueball (Kochelev),
nonperturbative instanton effects in the hadronic decay
(Zetocha et al.).



Unintegrated gluon distributions

We use a few different UGDs which are available from the literature, e.g. from the TMDLib package (Hautmann et

al.) or the CASCADE Monte Carlo code (Jung et al.).

1.

Firstly we use a glue constructed according to the prescription initiated in (Kimber et al.) and later
updated in (Martin et al.), which we label below as “KMR". It uses as an input the collinear gluon
distribution from Harland-Lang et al.

Secondly, we employ two UGDs obtained by Kutak. There are two versions of this UGD. Both introduce a
hard scale dependence via a Sudakov form factor into solutions of a small-x evolution equation. The first
version uses the solution of a linear, BFKL evolution with a resummation of subleading terms and is
denoted by "Kutak (linear)”. The second UGD, denoted as “Kutak (nonlinear)” uses instead a nonlinear
evolution equation of Balitsky-Kovchegov type. Both of the Kutak's UGDs can be applied only in the
small-x regime, x < 0.01.

The third type of UGD has been obtained by Hautmann and Jung from a description of precise HERA
data on deep inelastic structure function by a solution of the CCFM evolution equations. We use “Set 2".



KMR UGDF

For the case of the KMR UGD, it has recently been shown
(Maciula, Szczurek), that it includes effectively higher order
corrections of the collinear factorization approach. In this
sense should give, within our approach, a result similar to that
found recently in the NLO approach (Feng, Lansberg et al.) at
not too small transverse momenta.

In our approach we can go to very small transverse momenta
close to pr = 0.



Results for the LHC
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Rysunek: Two-dimensional distributions in (x1, g17) (left panel)
and in (x2, g27) (right panel) for n.(1S) production for \/s = 8
TeV. In this calculation the KMR UGD was used for illustration.



Results for the LHC
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Rysunek: Distributions in logyq(x1) or logio(x2) (left panel) and
distributions in g1 7 or ga1 (right panel) for the LHCb kinematics.
Here the different UGDs were used in our calculations. Here we
show an example for /s = 8 TeV.



Results for the LHC
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Rysunek: Unintegrated gluon densities for typical scale ;2= 100
GeV? for 11c(1S) production in proton-proton scattering at LHCb
kinematics.

UGDs are quite different but ...



Results for the LHC
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Rysunek: Differential cross section as a function of transverse
momentum for prompt 7-(1S) production compared with the
LHCb data (Aaij et al.) for \/s =7,8TeV and preliminary
experimental data (Usachov PhD) for /s = 13 TeV. Different
UGDs were used. Here we used the g*g* — 1-(1S) form factor
calculated from the power-law potential.

F(0,0) extracted from I, (15) at NLO accuracy



Results for the LHC, 7.(25)
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Rysunek: Differential cross section as a function of transverse
momentum for prompt 7-(2S) production for /s = 7,8,13 TeV.

F(0,0) extracted from I, (»5) at NLO accuracy



Results for the LHC, another representation
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Rysunek: Differential cross section as a function of transverse
momentum for prompt 7-(2S) production for /s = 7,8,13 TeV.



Results for the LHC, different form factors
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Rysunek: Transverse momentum distributions calculated with
different form factors obtained from different potential models of
quarkonium wave function and one common normalization of
|F(0,0)].



Results for the LHC
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Rysunek: Distributions calculated with several different form
factors obtained from different potential models of quarkonium.

Different F(0,0).



Results for the LHC, integrated cross section
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Rysunek: The integrated cross section computed within LHCb
range of pr and y with our transition form factors, compared to
experimental values. Here red crosses represent values for
Buchmiiller-Tye potential (B-T) and deltoids for Power-law
potential (P-law).

Somewhat faster grow for experimental data.



Results for the LHC, effect of form factor
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Rysunek: Comparison of results for two different transition form
factor, computed with the KMR unintegrated gluon distribution.
We also show result when the (qf-,-, qu) dependence of the
transition form factor is neglected.

Is the form factor included in collinear calculations ?
Not always.



Results for the ATLAS/CMS kinematics
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Rysunek: Distribution in logyg(x1) or logig(x2) (left panel) and
distribution in g1 1 or go1 (right panel) for ATLAS or CMS

conditions.

Not so small xi, x» as for LHCb.



Results for the ATLAS/CMS kinematics
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Rysunek: Transverse momentum distribution of prompt 7-(1S) for
—25<y<25and/s=7TeV.



Broader range of transverse momenta
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Rysunek: Transverse momentum distribution of prompt 7-(1S) for
Vs =7 TeV.



Broader range of transverse momenta

N IV B T T T
8 10° E u‘ it R(0)= 0.60 (GeV™)

< E —— KMR MMHT2014nl0

€ r -- JH 2013 ser2

o10* R(0)= 0.89 (GeV*?):

k] - - - - KMR MMHT2014nl0

B — — JH 2013 set2

©

1,(1S) prompt production, LHCb dats
—F— 2.0<y<a5

0 2 4 6 8 10

vivd vl vl vl il

Rysunek: Transverse momentum distribution of prompt 7-(1S) for
Vs =7 TeV.

Unphysically large R(0) necessary in NRQCD approach.



Conclusions, v*v* — 1,

» The transition form factor for different wave functions obtained as a
solution of the Schrddinger equation for the cT system, for different
phenomenological cC potentials from the literature, has been
calculated.

» We have studied the transition form factors for y*v* — 7. (1S,2S)
for two space-like virtual photons, which can be accessed
experimentally in future measurements of the cross section for the
ete™ — eTe 1. process in the double-tag mode.

» The transition form factor for only one off-shell photon as a
function of its virtuality was studied and compared to the BaBar
data for the 1.(1S) case.

» Predictions for 7:(2S) have been presented.

» Dependence of the transition form factor on the virtuality was
studied and delayed convergence of the form factor to its
asymptotic value %fnc as predicted by the standard hard scattering
formalism, was presented.

> It seems that nonrelativistic approach may be too approximate.

» There is practically no dependence on the asymmetry parameter w,
which could be verified experimentally at Belle 2.



Conclusions, pp — 7.

» k.-factorization approach with modern UGDs lead to good
description of the LHCb data for pp — 1.(1S) — pp for /s =7, 8
TeV and somewhat worse for /s = 13 TeV (a PhD thesis).

Some room for color octet.
Feed down is small (Baranov).

» Range of x1,x and g17, g2 was discussed.
For the LHCb kinematics very small longitudinal momentum
fractions are probed. Transverse momenta not too small.

» We do not see an obvious sign of the onset of saturation.
LHCb cross section grows even faster than our result without
saturation.

But gluon transverse momenta are not small.

> Predictions for 7:(2S) has been presented.
Strong deviations could signal large CO contribution.

» We have also discussed uncertainties related to g*g* — 7. form
factor. They are somewhat smaller than those related to UGDs. No
uncertainties due to renormalization /factorization scales were
discussed.



