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Introduction



Description of the mechanism γ∗γ∗ → ηc(1S , 2S)
Babiarz, Goncalves, Pasechnik, Schäfer and Szczurek,
Phys. Rev. D100, 054018 (2019).
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Nonrelativistic quarkonium wave functions
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Radial momentum-space wave function for different potentials.
Radial spatial wave function are obtained by solving the Schrödinger
equation.

J. Cepila, J. Nemchik, M. Krelina and R. Pasechnik, arXiv:1901.02664 [hep-ph].

∂2u(r)

∂r2
= (Veff(r)− ǫ)u(r) , u(r) =

√
4π rψ(r) ,

∞
∫

0

|u(r)|2dr = 1 ⇒
∫

∞

0

|u(p)|2dp = 1



Light-front wave functions
We treat the ηc as a bound state of a charm quark and
antiquark, assuming that the dominant contribution comes
from the cc̄ component in the Fock-state expansion:

|ηc ; P+, P〉 =

∑

i,j,λ,λ̄

δi
j
√

Nc

∫

dzd2k

z(1− z)16π3
Ψ
λλ̄

(z, k)|ciλ(zP+, pc )c̄
j

λ̄
((1− z)P+, p c̄ )〉 + . . .

(1)

Here the c-quark and c̄-antiquark carry a fraction z and 1− z

respectively of the ηc ’s plus-momentum. The light-front
helicites of quark and antiquark are denoted by λ, λ̄, and take
values ±1. The transverse momenta of quark and antiquark
are

pc = k + zP , p c̄ = −k + (1− z)P . (2)

The light-cone representation is obtained by Terentev’s
prescription valid for weakly bound systems.



Light-front wave functions
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Radial light-front wave function for Buchmüller-Tye potential.

Terentev prescription ⇒ p = k, pz = (z − 1
2
)Mcc̄ ,

ψ(z , k) =
π√
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F (0, 0) transition for both on-shell photons

F (0, 0) = e2
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,

F (0, 0) is related to the two-photon decay width by the formula:

Γ(ηc → γγ) =
π

4
α2

emM3
ηc
|F (0, 0)|2 .

F (0, 0) can be rewrite in the terms of radial momentum space wave function u(p):
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,

In the non-relativistic (NR) limit, where p2/m2
c ≪ 1, β ≪ 1, and 2mc = Mcc̄ = Mηc ,

we obtain
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√

Nc

√
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π
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∫ ∞
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√
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,

where β = p
√

p2+m2
c

, the velocity v/c of the quark in the cc̄ cms-frame and R(0)

radial wave function at the origin.



F (0, 0) for both on-shell photons
Transition form factor |F (0, 0)| for ηc(1S) at Q2

1 = Q2
2 =0.

potential type mc [GeV] |F (0, 0)| [GeV
−1] Γγγ [keV] fηc [GeV]

harmonic oscillator 1.4 0.051 2.89 0.2757
logarithmic 1.5 0.052 2.95 0.3373
power-like 1.334 0.059 3.87 0.3074
Cornell 1.84 0.039 1.69 0.3726
Buchmüller-Tye 1.48 0.052 2.95 0.3276
experiment - 0.067 ± 0.003 [1] 5.1 ± 0.4 [1] 0.335 ± 0.075 [2]

[1] M. Tanabashi et al. [Particle Data Group], Phys. Rev. D 98, no.3, 030001 (2018).

[2] K. W. Edwards et al. [CLEO Collaboration], Phys. Rev. Lett. 86, 30 (2001) [hep-ex/0007012].

R(0) and γγ-width for ηc(1S) derived in the non-relativistic limit.

potential type R(0)[GeV3/2] Γγγ [keV] M = Mηc
Γγγ [keV] M = 2mc

harmonic oscillator 0.6044 5.1848 5.8815
logarithmic 0.8919 11.290 11.157
power-like 0.7620 8.2412 10.297
Cornell 1.2065 20.660 13.568
Buchmüller-Tye 0.8899 11.240 11.409

fηcϕ(z , µ2
0) =

1

z(1− z)

√
Nc 4mc

16π3

∫

d2k θ(µ2
0 − k2)ψ(z , k) and

∫

1

0

dzϕ(z, µ2

0) = 1



F (0, 0) for both on-shell photons

Transition form factor |F (0, 0)| for ηc(2S) at Q2
1 = Q2

2 =0.

potential type mc [GeV] |F (0, 0)| [GeV
−1] Γγγ [keV] fηc [GeV]

harmonic oscillator 1.4 0.03492 2.454 0.2530
logarithmic 1.5 0.02403 1.162 0.1970
power-like 1.334 0.02775 1.549 0.1851
Cornell 1.84 0.02159 0.938 0.2490
Buchmüller-Tye 1.48 0.02687 1.453 0.2149
experiment [1] - 0.03266 ± 0.01209 2.147 ± 1.589

[1] M. Tanabashi et al. [Particle Data Group], Phys. Rev. D 98, no.3, 030001 (2018).

R(0) and γγ-width for ηc(2S) derived in the non-relativistic limit.

potential type R(0) [GeV
3/2] Γγγ [keV] M = Mηc

Γγγ [keV] M = 2mc

harmonic oscillator 0.7402 5.2284 8.8214
logarithmic 0.6372 3.8745 5.6946
power-like 0.5699 3.0993 5.7594
Cornell 0.9633 8.8550 8.6493
Buchmüller-Tye 0.7185 4.9263 7.4374



Normalized transition form factor F̃ (Q2, 0)
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J. P. Lees et al. [BaBar Collaboration], Phys. Rev. D 81, 052010 (2010) [arXiv:1002.3000 [hep-ex]].



Transition form factor F (Q2
1 ,Q

2
2) for

γ∗γ∗ → ηc(1S , 2S)
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Some comments
In order to estimate the factorization breaking in the transition
form factor we will also estimate the normalized form factor,
defined by:

F̃ (Q2
1 ,Q

2
2) =

F (Q2
1 ,Q

2
2)

F (0, 0)
, (3)

which nicely quantifies the deviation from point-like coupling.
A popular model for the transition form factor is based on the
vector meson dominance approach and reads:

F̃ (Q2
1 ,Q

2
2) =

M2
J/Ψ

Q2
1 + M2

J/Ψ

·
M2

J/Ψ

Q2
2 + M2

J/Ψ

. (4)

It features a factorized dependence on the photon virtualities,
In our analysis, we will quantify the factorization breaking of
the transition form factor by estimating the quantity defined
by:

R(Q2
1 ,Q

2
2) =

F̃ (Q2
1 ,Q

2
2)

F̃ (Q2
1 , 0)F̃ (0,Q2

2)
. (5)



Factorization breaking
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Transition form factor F (ω,Q2)
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Asymptotic behaviour of Q2F (Q2, 0)

The rate of approaching of Q2F (Q2) to its asymptotic value predicted by
Brodsky and Lepage
G. P. Lepage and S. J. Brodsky, Phys. Rev. D 22, 2157 (1980).

Q2F (Q2)→ 8
3 fηc

, while Q2 →∞
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Distribution amplitudes and quarkonium wave

functions
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Distribution amplitudes for different wave functions for ηc (1S) (left panel) and for ηc

(2S) (right panel).

fηc
ϕ(z , µ2

0) =
1

z(1− z)

√
Nc 4mc

16π3

∫

d2k θ(µ2
0 − k2)ψ(z , k)

∫ 1

0
dz ϕ(z , µ2

0) = 1



The evolution of the distribution amplitudes

The distribution amplitudes can be expanded in terms of the Gegenbauer

C
3/2
n polynomials:

ϕ(z, µ2) = 6z(1− z)
(

1 + a2(µ
2)C

3/2
2 (2z − 1) + ...

)

,

and then extract the coefficients:

an(µ0) =
2(2n + 3)

3(n + 1)(n + 2)
·
∫ 1

0

dzϕ(z, µ0)C
3/2
n (2z − 1) ,

an(µ) = an(µ0) ·
[

αs(µ)

αs(µ0)

]γn/β0

.

Extracted coefficients an(µ0), for the Buchmüller-Tye potential

n an(µ0) ηc (1S) an(µ0) ηc (2S)
2 -0.284 -0.0765
4 0.0635 -0.1627
6 -0.008157 0.128
8 -0.000619 -0.049
10 0.000216 0.0088



The evolution of the distribution amplitudes
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Inclusive production of ηc quarkonia in

proton-proton collisions
The diagram below illustrates the situation adequate for the
kT -factorization calculations used in the present paper.

ηc(1S, 2S)

p

p

Rysunek: Generic diagram for the inclusive process of ηc(1S) or
ηc(2S) production in pp scattering via two gluons fusion.

I. Babiarz, R. Pasechnik, W. Schäfer and A. Szczurek,
arXiv:1911.03403



kt-factorization approach
The inclusive cross section for ηc-production via the 2→ 1
gluon-gluon fusion mode is obtained from

dσ =

∫

dx1

x1

∫

d2q1

πq2
1

F(x1, q
2
1)

∫

dx2

x2

∫

d2q2

πq2
2

F(x2, q
2
2)

1

2x1x2s
|M|2 dΦ(2→ 1). (6)

The unintegrated gluon distributions are normalized such,
that in the DGLAP-limit

F(x , q2) =
∂xg(x , q2)

∂ log q2
. (7)

Let us denote the four-momentum of the ηc by P. It can be
parametrized as:

P = (P+, P−,P) = (
m⊥√

2
e

y
,

m⊥√
2

e
−y
,P) , (8)



kt-factorization approach
The phase-space element is

dΦ(2→ 1) = (2π)4δ(4)(q1 + q2 − P)
d4P

(2π)3
δ(P2 −m2) (9)

The gluon four momenta are written as

q1 = (q1+, 0, q1) , q2 = (0, q2−, q2) , (10)

with

q1+ = x1

√

s

2
, q2− = x2

√

s

2
. (11)

We can then calculate the phase-space element as

dΦ(2→ 1) = 2πδ(q1+
− P+)δ(q2− − P−)δ

(2)
(q1 + q2 − P) dP+dP−d

2
P δ(2P+P− − P

2 − m
2
) .

(12)

This gives

dΦ(2→ 1) = 2π
2

s
δ(x1 −

m⊥√
s

e
y
)δ(x2 −

m⊥√
s

e
−y

)δ
(2)

(q1 + q2 − P)
dP+

2P+
d

2
P

=
2π

s
δ(x1 −

m⊥√
s

e
y
)δ(x2 −

m⊥√
s

e
−y

)δ
(2)

(q1 + q2 − P)dyd
2
P. (13)



kt-factorization approach
We therefore obtain for the inclusive cross section

dσ

dyd2P
=

∫

d2q1

πq2
1

F(x1, q
2
1)

∫

d2q2

πq2
2

F(x2, q
2
2) δ

(2)
(q1 + q2 − P)

π

(x1x2s)2
|M|2, (14)

where the momentum fractions x1,2 of gluons are

x1 =
m⊥√

s
ey , x2 =

m⊥√
s

e−y . (15)

The off-shell color singlet matrix element is written in terms of
the Feynman amplitude as (we restore the color-indices):

Mab
=

q
µ

1⊥
qν

2⊥

|q1||q2|
Mab
µν =

q1+q2−

|q1||q2|
n
+
µn
−

ν M
ab
µν =

x1x2s

2|q1||q2|
n
+
µn
−

νM
ab
µν . (16)

Then, we obtain for the cross section

dσ

dyd2P
=

∫

d2q1

πq4
1

F(x1, q
2
1)

∫

d2q2

πq4
2

F(x2, q
2
2) δ

(2)
(q1 + q2 − P)

π

4
|n+
µn
−

µMµν |
2
, (17)



kt-factorization approach
The CS matrix element squared averaged over color is

|n+
µ n−µMµν |

2
=

1

(N2
c − 1)2

∑

a,b

|n+
µ n−µMab

µν | . (18)

The matrix element has the form

n
+
µn
−

µM
ab
µν = 4παS (−i)[q1, q2]

[tatb ]
√

Nc

I(q
2
1, q

2
2)

= 4παS (−i)
1

2
δ

ab 1
√

Nc

[q1, q2] I(q
2
1, q

2
2) (19)

It is related to the γ∗γ∗ηc transition formfactor through the
relation

F (Q2
1 ,Q

2
2) = e2

c

√

Nc I(q2
1, q

2
2) . (20)

The vector product [q1, q2] is defined as

[q1, q2] = qx
1 q

y
2 − q

y
1 qx

2 = |q1||q2| sin(φ1 − φ2) . (21)



kt-factorization approach
Then, the averaged matrix element squared becomes

|n+
µ n−µMµν |

2
= 16π2α2

S

1

4

1

Nc
|[q1,q2] I(q2

1,q
2
2)|2

1

(N2
c − 1)2

∑

a,b

δabδab

= 4π2α2
S

1

Nc(N2
c − 1)

|[q1,q2] I(q2
1,q

2
2)|2 (22)

This leads to our final result:

dσ

dyd2P
=

∫

d2q1

πq4
1

F(x1, q
2
1)

∫

d2q2

πq4
2

F(x2, q
2
2) δ

(2)
(q1 + q2 − P)

π3α2
S

Nc (N2
c − 1)

|[q1, q2] I(q
2
1, q

2
2)|2.

In real calculation we take µ2
F = m2

T and for renormalization
scale(s)

α2
s → αs(max(m2

t , q
2
t,1))αs(max(m2

t , q
2
t,2)) . (23)



Normalization of the g∗g∗ηc(1S , 2S) form factors
From the proportionality of the g∗g∗ηc and γ∗γ∗ηc vertices to
the leading order (LO), we obtain, that at LO:

ΓLO(ηc → gg) =
N2

c − 1

4N2
c

1

e4
c

( αs

αem

)2
ΓLO(ηc → γγ) , (24)

where the LO γγ width is related to the transition form factor
for vanishing virtualities through

ΓLO(ηc → γγ) =
π

4
α2

emM3
ηc
|F (0, 0)|2 . (25)

At NLO, the expressions for the widths read (see Lansberg et
al.)

Γ(ηc → γγ) = ΓLO(ηc → γγ)
(

1 −
20 − π2

3

αs

π

)

,

Γ(ηc → gg) = ΓLO(ηc → gg)
(

1 + 4.8
αs

π

)

. (26)



Normalization and decay widths
In order to control the model uncertainty on the normalization,
one may want to adjust its value F (0, 0) to the measured
decay width. Here we face the ambiguity of fitting either to
the hadronic or to the γγ width. As there are no other known
radiative decays besides γγ, one may try to identify the
gg -width with the total (hadronic) width.
In Tables on next pages, we show the values of |F (0, 0)|
obtained in three different ways.
In the first table we show the result extracted from the total
decay width. Here αs = 0.26, which is appropriate to our
choice of the renormalization scale in the production
amplitudes.
In the second table we extract |F (0, 0)| from the radiative
decay width in two different ways. The first result is obtained
based on LO relation using the experimental value for
Γ(ηc → γγ) on the left hand side, while the second one uses
the NLO relation.



Decay widths

Tablica: Total decay widths as well as |F (0, 0)| obtained from Γtot

using the next-to-leading order approximation.

Experimental values Derived from Eq.(26)
Γtot (MeV) |F (0, 0)|gg [GeV−1]

ηc(1S) 31.9±0.7 0.119±0.001
ηc(2S) 11.3±3.2±2.9 0.053±0.010



Decay widths

Tablica: Radiative decay widths as well as |F (0, 0)| obtained from
Γγγ using leading order and next-to-leading order approximation.

Experimental values Derived from Eq.(25) Derived from Eq.(26)

Γγγ (keV) |F(0, 0)|[GeV−1] |F(0, 0)|γγ [GeV−1]
ηc (1S) 5.0 ±0.4 0.067±0.003 0.079±0.003

ηc (2S) 1.9 ±1.3 ·10−4 · Γηc (2S) 0.033±0.012 0.038±0.014



Extracting F (0, 0), a comment

We observe a substantial difference between the two different
extractions of |F (0, 0)|. While in the ηc(2S) case, the error
bars are too large to claim an inconsistency, the situation for
the ηc(1S) is not satisfactory.
This may hint at an insufficiency of the potential model
treatment of the ηc . Possible solutions:
admixture of light hadron states (Shifman),
a mixing with a pseudoscalar glueball (Kochelev),
nonperturbative instanton effects in the hadronic decay
(Zetocha et al.).



Unintegrated gluon distributions

We use a few different UGDs which are available from the literature, e.g. from the TMDLib package (Hautmann et

al.) or the CASCADE Monte Carlo code (Jung et al.).

1. Firstly we use a glue constructed according to the prescription initiated in (Kimber et al.) and later
updated in (Martin et al.), which we label below as “KMR”. It uses as an input the collinear gluon
distribution from Harland-Lang et al.

2. Secondly, we employ two UGDs obtained by Kutak. There are two versions of this UGD. Both introduce a
hard scale dependence via a Sudakov form factor into solutions of a small-x evolution equation. The first
version uses the solution of a linear, BFKL evolution with a resummation of subleading terms and is
denoted by ”Kutak (linear)”. The second UGD, denoted as “Kutak (nonlinear)” uses instead a nonlinear
evolution equation of Balitsky-Kovchegov type. Both of the Kutak’s UGDs can be applied only in the
small-x regime, x < 0.01.

3. The third type of UGD has been obtained by Hautmann and Jung from a description of precise HERA
data on deep inelastic structure function by a solution of the CCFM evolution equations. We use “Set 2”.



KMR UGDF

For the case of the KMR UGD, it has recently been shown
(Maciula, Szczurek), that it includes effectively higher order
corrections of the collinear factorization approach. In this
sense should give, within our approach, a result similar to that
found recently in the NLO approach (Feng, Lansberg et al.) at
not too small transverse momenta.

In our approach we can go to very small transverse momenta
close to pT = 0.



Results for the LHC
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Results for the LHC
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UGDs are quite different but ...



Results for the LHC
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Results for the LHC, ηc(2S)
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Results for the LHC, another representation
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Results for the LHC, different form factors
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Results for the LHC
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Results for the LHC, integrated cross section
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Somewhat faster grow for experimental data.



Results for the LHC, effect of form factor
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Is the form factor included in collinear calculations ?
Not always.



Results for the ATLAS/CMS kinematics
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Not so small x1, x2 as for LHCb.



Results for the ATLAS/CMS kinematics
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Broader range of transverse momenta
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Broader range of transverse momenta
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Unphysically large R(0) necessary in NRQCD approach.



Conclusions, γ∗γ∗ → ηc
◮ The transition form factor for different wave functions obtained as a

solution of the Schrödinger equation for the cc̄ system, for different
phenomenological cc̄ potentials from the literature, has been
calculated.

◮ We have studied the transition form factors for γ∗γ∗ → ηc (1S,2S)
for two space-like virtual photons, which can be accessed
experimentally in future measurements of the cross section for the
e+e− → e+e−ηc process in the double-tag mode.

◮ The transition form factor for only one off-shell photon as a
function of its virtuality was studied and compared to the BaBar
data for the ηc(1S) case.

◮ Predictions for ηc(2S) have been presented.
◮ Dependence of the transition form factor on the virtuality was

studied and delayed convergence of the form factor to its
asymptotic value 8

3 fηc
as predicted by the standard hard scattering

formalism, was presented.
◮ It seems that nonrelativistic approach may be too approximate.
◮ There is practically no dependence on the asymmetry parameter ω,

which could be verified experimentally at Belle 2.



Conclusions, pp → ηc

◮ kt -factorization approach with modern UGDs lead to good
description of the LHCb data for pp → ηc(1S)→ pp̄ for

√
s = 7, 8

TeV and somewhat worse for
√

s = 13 TeV (a PhD thesis).
Some room for color octet.
Feed down is small (Baranov).

◮ Range of x1, x2 and q1T , q2T was discussed.
For the LHCb kinematics very small longitudinal momentum
fractions are probed. Transverse momenta not too small.

◮ We do not see an obvious sign of the onset of saturation.
LHCb cross section grows even faster than our result without
saturation.
But gluon transverse momenta are not small.

◮ Predictions for ηc(2S) has been presented.
Strong deviations could signal large CO contribution.

◮ We have also discussed uncertainties related to g∗g∗ → ηc form
factor. They are somewhat smaller than those related to UGDs. No
uncertainties due to renormalization/factorization scales were
discussed.


