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On the meaning of “universality” of PDFs
I Monte Carlo factorization scheme (FS) is a variant of MS-bar

system (including new definition of the PDFs for initial hadrons).
It is therefore trivially universal, that is process independent.

I The question of its universality is formulated differently:
As the basic role of MC FS is to simplify drastically NLO
corrections, the question is now whether the same single variant
of the MC FS is able to achieve the same maximal simplification of
the NLO corrections for all processes with one or two initial
hadrons and any number of the final hadrons?

I The answer is positive and the proof is elaborated within the
Catani-Seymour subtraction methodology.

I MC FS is mandatory in KrkNLO matching NLO and parton shower
– a much simpler alternative of POWHEG and/or MC NLO

I However, the use of MC FS simplifies NLO calculations for any
method and arbitrary process.

S. Jadach (IFJ PAN, Krakow) On the universality of the MC factorization scheme Kraków, Jan. 7th, 2020 2 / 20



How MC FS simplifies NLO Catani-Seymour master formula?
Thanks to use on PDFs in the (physical) MC factorization scheme
and the use of the new modified soft-collinear counterterms,
the Catani-Seymour NLO master formula

σNLO(p) = σB(p)+

+

∫
m

[
dσV (p) + dσB(p)⊗ I

]
ε=0 +

∫
dz
∫

m

[
dσB(zp)⊗ (P + K)(z)

]
ε=0

+

∫
m+1

[
dσR(p)ε=0 −

( ∑
dipoles

dσB(p)⊗ dVdipole
)
ε=0

]
,

(1)

turns into a much simpler one

σNLO(p) = σB(p) +

∫
m

[
dσV (p) + dσB(p) I(ε)

]
ε=0

+

∫
m+1

[
dσR(p)ε=0 −

( ∑
dipoles

dσB(p)⊗ dVdipole
)
ε=0

] (2)

for ANY process with one or two initial hadrons
and any number m of final coloured partons.
Consequently, KrkNLO matching scheme with parton shower
(much simpler alternative of POWHEG or MC@NLO)
applies not only to DY-like processes but to ANY process.
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DY example of NLO for CS with PDFs in the MC scheme

JHEP 1510 (2015) 052 [arXiv:1503.06849] (gluonstrahlung channel only):
Including measurement functions JF

LO = JLO(xF z, xB ), JB
LO = JLO(xF , xB z), JNLO(xF , xB , z, k

T ),
the NLO x-section with CS dipole subtractions reads:

σMS
NLO[J] =

∫
dxF dxB dz dx δx=zxF xB

{
δ1=z (1 + ∆VS) d2σLO(sx , θ̂) JLO + G(z)(JF

LO + JB
LO) d2σLO(szx , θ̂)

+
(

d5ρNLO
1 JNLO −

(
d3ρF

1 JF
LO + d3ρB

1 JB
LO)
)
d2σLO(ŝ, θ̂)

)
δ1−z=α+β

}
DMS

q(sx , xF )DMS
q̄(sx , xB ).

The dipole for real gluon emission in d = 4 using Sudakov parametrization:
d3ρF

1 (s1) = αs
2πHqq(α, β, ε)

∣∣
ε=0 = αs

2π
dβ1dα1
β1

dφ1
2π Pqq(1− α1 − β1) and ρB

1 defined similarly.

In the KrkNLO matching, the absence of G(z) allows for single multiplicative MC weight:

W MC
NLO(k)

∣∣
qq chan. = (1 + ∆MC

VS )
d5ρNLO

1 (k)

(d3ρF
1 +d3ρB

1 ) d2σLO(ŝ,θ̂)
.

NB. the finite virtual+soft corrections (qq̄ channel) is:

∆MC
VS = ∆virt.

qq̄ (ε) + αs
2π

Γ(1+ε)
Γ(1+2ε)

(
ŝ

4πµ2

)ε ∫ 1
0 dz zν̃

q←q
(z, ε) = CFαs

π

(
1
4 + 2

3π
2
)

Last but not least ŝ = µ2 was instrumental!
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ŝ
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Explicit transformation of LO PDFs from MS to MC FS
At every Q2 = µ2 the following “rotation” in the x and flavour space:q(x ,Q2)

q̄(x ,Q2)

G(x ,Q2)


MC

=

q
q̄
G


MS

+
αs

2π

∫
dzdy

KMC
qq (z) 0 K

MC
qG (z)

0 K
MC
q̄q̄ (z) K

MC
q̄G (z)

K
MC
Gq (z) K

MC
Gq̄ (z) K

MC
GG(z)

q(y ,Q2)

q̄(y ,Q2)

G(y ,Q2)


MS

δ(x−yz)

where

K
MC
Gq (z) = CF

{
1 + (1− z)2

z
ln

(1− z)2

z
+ z

}
,

K
MC
GG(z) = CA

{
4
[

ln(1− z)

1− z

]
+

+ 2
[ 1

z
− 2 + z(1− z)

]
ln

(1− z)2

z
− 2

ln z

1− z
− δ(1− z)

(
π2

3
+

341

72
−

59

36

Tf

CA

)}
,

K
MC
qq (z) = CF

{
4
[

ln(1− z)

1− z

]
+

− (1 + z) ln
(1− z)2

z
− 2

ln z

1− z
+ 1− z − δ(1− z)

(
π2

3
+

17

4

)}
,

K
MC
qG (z) = TR

{[
z2 + (1− z)2

]
ln

(1− z)2

z
+ 2z(1− z)

}
.

All virtual parts ∼ δ(1− z) are adjusted using momentum sum rules:∑
b

∫
dz z KMC

ba (z) = 0

From Eur. Phys. J. C76 (2016) 649 [arXiv:1606.00355].
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KrkNLO method and PDFs in MC factorization scheme

(A) 1-st idea of the KrkNLO for DY process and MC FS:
Acta Phys.Polon. B42 (2011) 2433 , [arXiv:1111.5368 ] Ustron 2011 Proc.

(B) KrkNLO scheme for DY and DIS, PDFs in the MC factorization scheme:
Phys.Rev. D87 (2013) 3, 034029 , [arXiv:1103.5015].

(C) Implementation for DY process of top of SHERPA and HERWIG in
JHEP 1510 (2015) 052 [arXiv:1503.06849],
comparisons with NLO and NNLO (fixed order), MC@NLO and POWHEG.

(D) PDFs in Monte Carlo factorization scheme, DY and Higgs production
Eur. Phys. J. C76 (2016) 649 [arXiv:1606.00355].

(E) MC simulations of Higgs-boson production at the LHC with the KrkNLO method
Eur.Phys.J. C77 (2017) 164 , [arXiv:1607.06799],

KrkNLO team: W. Płaczek, M. Sapeta, A. Siódmok, M. Skrzypek and S.J.
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Are PDFs in the MC factorization scheme universal?
i.e. are they process independent?
In the MC scheme one subtract from NLO distribution in d dimensions
the following soft-collinear counterterm:

ΛMC
J←I(ε, z) =

αs

2π
(4π)−ε

Γ(1 + ε)

(1
ε

PJI(z) +KJ←I(z)
)
, J, I = q, q̄,G.

(d = 4 + 2ε) instead of

ΛMS
J←I(ε, z) =

αs

2π
(4π)−ε

Γ(1 + ε)

1
ε

PJI(z), J, I = q, q̄,G.

This implies the relation between PDFs in MS and MC scheme:

DMC
J (µ2, x) = DMS

J (µ2, x) +
∑

I

∫
dx0

dz
z

αs

2π
KJ←I(z) DMS

I (µ2, x0/z)

Is K-transformation on PDFs “universal”? Process independent?
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Is K-transformation on PDFs “universal”?

I The freedom of the K-transformation on PDFs is known for ages.

I K was adjusted semi-empirically in KrkNLO in Refs.(C,D) such that for
pp → Z/γ and pp → Higgs process the “collinear remnant” terms
∼ δ(kT ) in the NLO calculations have disappeared (DY scheme?)

I Is it possible that the same K does the same for other processes?

I To answer this question systematically we derive K from subtraction
terms of the NLO calculations, i.e. “dipoles” of the Catani-Seymour.

I This was already done in early papers on KrkNLO method Ref.(B),
albeit only for gluonstrahlung in DY and DIS, for “dipoles” of our own.

I Warm up exercise:
do we get our Kqq directly from the Initial-Initial dipole of
Catani-Seymour paper Nucl.Phys. B485 (1997) 291?
next slide ...
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Do we get Kqq(z) from II CS dipole of Nucl.Phys. B485 (1997) ?
Start with kinematics of DY in Sudakov parametrization...

pk = αpa + βpb + pT
k , α =

pk pb

papb
, β =

pk pa

papb
,

α + β ≤ 1 |pT
k |2 = 2papbαβ.

Some auxiliary variables:

s = 2papb, ŝ = Q2 = (pa + pb − pk )2 = (1− α− β)s = sz, z = 1− α− β.
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Do we get Kqq(z) from II CS dipole of Nucl.Phys.B485 (1997)??
Yes, but not easily...

The initial-emitter initial-spectator Dai,b dipole in CS (d = 4− 2ε):

, (5.152)

In our notation: x = xi,ab = 1− α− β, v̄i = β and from direct evaluation one gets:

ν̃q,qG
(z, ε)|z 6=1 =

1
ε

Pqq(z) + 2CF (1 + z2)
ln(1− z)

1− z
− CF (1− z).

The same result in eq. (5.155-156) of CS paper looks mysteriously complicated:

In fact ∼ ln(2− x) term is in reality absent – it cancels out with another one in νa,b(x , ε).
The term ∼ 2

1−x ln 1
1−x cancels with another identical term inside νa,b(x , ε).

K̃ corrects for the unlucky definition of νa,b for DIS in CS paper, where m+ = α/(α+ β) is
applied only to soft part of DIS dipole, while in the DY it is applied to the entire dipole.
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More details: Kba(z) from CS initial-initial II dipoles
Let us recalculate II dipoles from the scratch, because in CS paper they are obscured by
the unlucky choice of the IF dipoles (DIS/ISR) as a baseline objects.

Our compact elegant definition of all nine II dipoles, K , I = q, q̄,G:

ν̃
K←I

(z, ε) =

∫
dαdβ δ1−z=α+β H(α, β, ε) =

∫
dαdβ δ1−z=α+β (αβ)ε z−ε

P∗K←I(α, β)

β

= δz=1 δKI
∑

J=G,q,q̄

∫ 1

0
dz zν̃

J←I
(z, ε) + δz=1

1
ε

PKI(z) + GK←I(z),

KKI(z) = GK←I(z) = δz=1 G0
KI + 1

z

[
zP′KI(z) + ln (1−z)2

z zPKI(z)
]

+
,

where G0
KI are from momentum sum rules. Agrees with CS for DY.

Denoting P̄KI(z) ≡ (1− z)PKI(z) we are using CS choice of the “soft partition function”:
P∗K←K = P̄KK (1−α−β,ε)

(α+β)β
, P∗K←I = PKI (1−α−β,ε)

β
, K 6= I.

NB. The same result is obtained with sharp “soft partition function” of paper (B):
P∗K←K = P̄KK (1−α−β,ε)

αβ
θα>β .

All PKI(z) kernels are here standard DGLAP splitting kernels.

What about FI and FF dipoles?
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K-matrix from IF, FI, FF original and modified CS dipoles
Point by point overview:

(1) K matrix and FF dipoles (final emiter and final spectator) are unrelated.
Hence Gab(z)|z 6=1 = 0. Factor νab(z, ε) decouples kinematically from PDFs.
Only νab(ε) =

∫ 1
0 dz νab(z, ε) matter (get combined with virt. corrs.)

(2) In CS paper, νab(z, ε) for FI dipoles (final emiter and initial spectator as in DIS)
couples kinematicaly with PDFs and LO part through Gab(z) 6= 0.

(3) However, we have modified kinematic mapping in FI dipoles such that they
kinematicaly decouple from PDFs, Gab(z)|z 6=1 = 0, as for FF. Next slide.

(4) It remains to check whether K-matrix from IF dipoles is the same as from II.

(5) Not true for original IF dipoles of CS, however...

(6) Easy to modify diagonal IF dipoles such that Kaa(z) are the same. Next slide.

(7) For nondiagonal IF dipoles a 6= b (G↔ q) a workaround is found. Next slide.

(8) Finally, it is possible to eliminate ALL collinear remanats Gab(z)|z 6=1

for ALL dipoles using common K-rotation of PDFs from MS-bar to MC FS.

(9) Last problem: collinear remnant terms ∼ ln
2pi ·pj
µ2 Pab(z) coupled with PDFs survive

for more than two “legs”?? It looks that a recipee for zeroing them was found:)
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New kinematic mapping in FI dipoles (initial spectator & final emitter)

This is the most important point!

dσa
bk = dΦ4+2ε(pk )

1

2pbpk
8πµ−2ε

αsP∗b←c (α, β)
pa p̃b

pa(p̃b − pk )

{ 1

s
dΦ(l′1 + p̃a; p̃b, l′2, ...) |M(l′1, p̃a; p̃b, l′2, ...)|

2
}

=
αs

2π

( Q2

4πµ2

)ε 1

Γ(1 + ε)

dΩn−3(pT
k )

Ωn−3
Hbc (α, β, ε)

{
dσLO (l′1, p̃a; p̃b, l′2, ...)

}
,

Hbc (α, β, ε) =
(αβ(1− β)

(1− α)

)ε P∗b←c (α, β, ε)

α
, p̃a = (1− α)pa, p̃b = Q − p̃a.

P∗b←c (α, β, ε)
∣∣
α→0 = Pbc (1− β, ε), NEXT SLIDE

The essential difference with the original CS is an additional active boost Bx (tested in MC):
l ′1 = Bx l1, l ′2 = Bx l2, X ′ = Bx X , in the plane perpendicular to Q, i.e. Bx Q = Q,
with hypervelocity η adjusted such that: 2l ′1 · p̃a = (Bx (η)l1) · p̃a = 2l1 · pa = s.

The resulting LO part {dσLO(l ′1, p̃a; p̃b, l ′2, ...)} does not depend on α and β anymore
and to complete NLO calculations one needs to know only (as in FF case):

νb←c(ε) =
∫

dαdβ Hbc(α, β, ε).
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Modified diagonal IF dipoles, (initial emitter & final spectator)

Exploiting freedom in K ∗c←a(α, β) to get the same Kca(z) as for II.

I P∗a←a(α, β) for IF and FI dipoles have to build together the correct soft limit.
I The CS choices for IF, e.g. P∗q←q = CF

[ 2
α+β

− (2− α) + εα
]
, are not good.

I The following general construction for diagonal IF and FI splittings was examined:
IF: P∗a←a(α, β) = m+(α, β) 1

α
[(1− z)Paa(z)]

∣∣
z=z(α,β)

,

FI: P∗a←a(α, β) = m−(α, β) 1
α

[(1− z)Paa(z)]
∣∣
z=z(α,β)

,
with several choices of soft partition functions:

m(a)
+ (α, β) = θβ<α, m(b)

+ (α, β) = α
α+β

, m(c)
+ (α, β) = α−αβ

α+β−αβ , m− = 1−m+.

and several choices of z-variable:
zA(α, β) = 1−max(α, β), zB(α, β) = 1− α, zC(α, β) = (1− α)(1− β).

I The corresponding radiator functions for IF were calculated:

ν̃
c←a

(z, ε) =
∫

dαdβ Ha←c(α, β) δ(z − zX (α.β)), X = A,B,C.
I Good choices (compatible with II) were found, for instance: Aa, Ac, Ca and Cc.

The choice zB = 1− α (Bjorken) used by CS is not good!

S. Jadach (IFJ PAN, Krakow) On the universality of the MC factorization scheme Kraków, Jan. 7th, 2020 14 / 20



Problem and workaround for non-diagonal IF dipoles

I Non-diagonal dipoles, a 6= b, are not IR-divergent, hence m± not really needed:
P∗c←a(α, β) = Pca

(
z(α, β)

)
in principle is OK.

I However, we get slightly different ν̃
c←a

(z, ε) than for II for ALL choices of z = z(α, β).
The difference traced back to upper phase space limit: max(α, β) ≤ 1 versus α+ β ≤ 1.

I The simplest workaround is to split IF non-diag. dipoles into two parts:
P∗+

c←a(α, β) = m(i)
+ (α, β)Pca(z)

∣∣
z=z(α,β)

, c 6= a,

P∗−c←a(α, β) = m(i)
− (α, β)Pca(z)

∣∣
z=z(α,β)

,

and treat P∗−c←a as extra (non-singular) dipoles in the FI class (decoupled from PDFs).

I This above solution works for m(a)
± and m(c)

± and looks like an affordable complication.

Summarizing, it was shown that by means of judicious adjustment of CS dipoles one may define
single set of PDFs in the MC scheme, for all dipoles in NLO calculation with Gba(z) = 0, z 6= 1,
for all processes, with arbitrary number of initial/final state legs,

However, this is not the end of the story...
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Collinear remnants of CS scheme in general case
Total cross-section in CS for m partons schematically (hh scattering):
σ =

∫
m

dσBorn +
[ ∫

m
dσVirt. +

∫
m+1

dσA +
∫

m+1
dσCt

]
+
∫

m+1

[
dσReal

ε=0 − dσA
ε=0

]
2-nd term [...] for h(p1)h′(p2)→ a(pa) + b(pb)→ 1 + 2 + . . .m, eq.(10.30) in CS:

σVirt.+A+Ct
ab =

∑
a′

∫
dxadxbdx fa(xa) fb(xb) 〈 (K + P)aa′(x) dσBorn

a′,b (xpa, pb) 〉color

+
∑

b′

∫
dxadxbdx fa(xa) fb(xb) 〈 (K + P)bb′(x) dσBorn

a,b′ (pa, xpb) 〉color , where

K aa′
F .S. ≡ 0

With our dipoles and PDFs in the MC FS we are getting Ka,a′ = 0 !!!
This is for ANY process, with h+h beams or lepton+h beams (DIS)!
Last problem: What about P? See next slide...
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The remaining collinear remnant P due to multiscales in NLO
Last problem

P-matrix is a quite primitive object (CS eq.10.25):

I It originates from normalization factors like
( xsai
µ2

F

)ε × 1
ε
Paa′ , sai = 2pa · pi .

I For hh→ Zγ,H,WW , .. and lepton-hadron DIS, only 2nd term is present.
It is easily eliminated with µ2

F = 2xpa · pb or µ2
F = Q2, getting P = 0.

I The problematic 1-st term is from
∑

i over IF-dipoles with different sai .
I Is there some choice of µ2

F in PDFs eliminating at once the entire 1-st term
for all processes with more than two coloured “legs”?

I See next slide...
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Zeroing collinear remnant P
(work in progress)

σcol.rem.
ab =

∫
dxadxb fb(µF , xb) fa(µF , xa)

{
dσBorn

a,b (pa, pb)+

+
∑
a′

∫
dx
〈 αS

2π
Paa′ (x)

[∑
i

Ti · Ta′

T 2
a′

ln
µ2

F
2xsai

+
Tb · Ta′

T 2
a′

ln
µ2

F
2xsab

]
dσBorn

a′,b (xpa, pb)
〉

color
+ . . .

}
Using colour conservation 〈 Ta′ + Tb +

∑
i Ti 〉color = 0 and evolution equations for fa(µ, x) we

obtain the following identity:

σcol.rem.
ab =

∫
dxadxb fb(µF , xb) fa(µ1, xa)

{
dσBorn

a,b (pa, pb) +
∑
a′

∫
dx

αS

2π
Paa′ (x)

×
〈 [∑

i

Ti · Ta′

T 2
a′

ln
µ2

F
2xsai

+
Tb · Ta′

T 2
a′

ln
µ2

F
2xsab

+ ln
µ2

1

µ2
F

]
dσBorn

a′,b (xxap1, xbp2)
〉

color
+ . . .

}
µ2

F is local dummy parameter in [...] (colour conservation!), hence we substitute µ2
F = 2xsab ,

and solve for µ1 the following equation:∑
a′

∫ 1

0
dzPaa′ (z)

∑
i

ln
sab

sai

〈Ti · Ta′

T 2
a′

dσBorn
a′,b (zpa, pb)

〉
c.
+
∑
a′

∫ 1

0
dzPaa′ (z)dσBorn

a′,b (zpa, pb) ln
µ2

1
2zsab

≡ 0.

New scale µ1 can be calculated numerically (1-dim. integral over z) at each point of the Born
phase space, h1 + h2 → pa + pb → 1 + 2 + . . .m, or even analytically in some simple cases.
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Issues already explored but not covered in this talk:
due to its limited scope...

I Fine details of new modified dipoles, soft-coll. counterterms in
d = 4 + 2ε dimensions, including new kinematic mappings.

I Compatibility of CS scheme with LO parton shower MC.
(Correct soft limit and and positivity).

I Explicit x-check calculations of NLO corrections using modified CS
dipoles for DIS (DY shown partly on slide 3).

Other important issues to be studied:

I More explicit examples of NLO calculations: pp → Z + jet , 2Jet , . . . .

I Extending KrkNLO to more processes.

I Does MC FS extend to “NLO PDFs” ⊗ “NNLO Hard process”?
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Summary

I PDFs in the MC scheme are formally and practically as universal
(process independent) as in the MS scheme thanks to
universality of the newly modified CS dipoles
and/or related soft-collinear counterterms. NEW!

I Substantial simplification of the classic Catani-Seymour
NLO calculation scheme is achieved. NEW!

I KrkNLO method with PDFs in the MC factorization scheme
(implementing NLO corrections with single multiplicative MC weight)
is NOT limited to processes with two coloured legs (DY, DIS)! NEW!

I All presented results are preliminary and unpublished!

Useful discussions with co-authors of the KrkNLO project
W. Płaczek, M. Sapeta, A. Siódmok, and M. Skrzypek are acknowledged.

“MC Factorization Scheme” is still temporary name, we are looking for some better
name in the next publication. What about KRK FS?

Preliminary version of this presentation was given at PSR 2017 Conf. in Cambridge.
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