

Exotic New Physics Searches

Alexander Oh University of Manchester

on behalf of the ATLAS Collaboration

Searches

 Severely constraining the parameter space for BSM physics at the LHC.

 This talk focusses on recent updates, many with full run-2 data sets.

A.	TLAS Exotics	Search	es* -	95%	6 CL	Upper Excl	usion Limits			ATLA	S Preliminar
Sta	atus: May 2019								$\int \mathcal{L} dt = (3)$	3.2 − 139) fb ^{−1}	$\sqrt{s} = 8, 13 \text{ TeV}$
	Model	ℓ, γ	Jets†	E_{T}^{miss}	∫£ dt[fb	-1]	Limit		5		Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH high Σp_T ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW \rightarrow q_0$ Bulk RS $G_{KK} \rightarrow WW \rightarrow q_0$ Bulk RS $g_{KK} \rightarrow tt$	$\begin{array}{c} 0 \ e, \mu \\ 2 \ \gamma \\ \hline \\ e, \mu \\ 2 \ \gamma \\ \hline \\ 2 \ \gamma \\ multi-channe \\ 0 \ e, \mu \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$	$1 - 4j$ $-$ $2j$ $\geq 2j$ $\geq 3j$ $-$ $2J$ $\geq 1 b, \geq 1J/2$ $\geq 2 b, \geq 3j$	Yes - - - 2j Yes Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 139 36.1 36.1	Мр Ms Mih Mih Mih Grik mass Grik mass Erik mass KK mass		4.1 TeV 2.3 TeV 1.6 TeV 3.8 TeV 1.8 TeV	7.7 TeV 8.6 TeV 8.9 TeV 8.2 TeV 9.55 TeV	$\begin{array}{l} n=2 \\ n=3 \ \text{HLZ NLO} \\ n=6 \\ n=6, M_D=3 \ \text{TeV, rot BH} \\ k/\overline{M}\rho_l=0.1 \\ k/\overline{M}\rho_l=0.1 \\ k/\overline{M}\rho_l=1.0 \\ \Gamma/m=15\% \\ \text{Ter (1,1), 32(A^{(1.1)} \to \text{tr})}=1 \end{array}$	1711.03301 1707.04147 1703.09127 1606.02265 1512.02586 1707.04147 1808.02380 ATLAS-CONF-2019-003 1804.10823 1803.09678
Gauge bosons	$\begin{array}{l} \operatorname{SSM} Z' \to \ell\ell \\ \operatorname{SSM} Z' \to \tau\tau \\ \operatorname{Leptophobic} Z' \to bb \\ \operatorname{Leptophobic} Z' \to bt \\ \operatorname{SSM} W' \to \ell\nu \\ \operatorname{SSM} W' \to \tau\nu \\ \operatorname{HVT} V' \to WZ \to qqqq \mbox{ m} \\ \operatorname{HVT} V' \to WH/ZH \mbox{ model} \\ \operatorname{LRSM} W_R \to \mu N_R \end{array}$	$\begin{array}{c} 2\ e,\mu\\ 2\ \tau\\ -\\ 1\ e,\mu\\ 1\ r\\ 0 del\ B \\ 0\ e,\mu\\ B \\ multi-channe\\ 2\ \mu\end{array}$	- 2 b ≥ 1 b, ≥ 1J/3 - 2 J	- - Yes Yes -	139 36.1 36.1 139 36.1 139 36.1 36.1 36.1 80	Z' mass Z' mass Z' mass Z' mass W' mass W' mass V' mass V' mass W _R mass W _R mass		5.1 Tr 2.42 TeV 2.1 TeV 3.0 TeV 6.0 3.7 TeV 2.93 TeV 2.93 TeV 3.25 TeV 5.0 Te	∋V) TeV :V	$\Gamma/m = 1\%$ $g_V = 3$ $g_V = 3$ $m(N_R) = 0.5 \text{ TeV}, g_L = g_R$	1903.06248 1709.07242 1805.09299 1804.10823 CERN-EP-2019-100 1801.06992 ATLAS-CONF-2019-003 1712.06518 1807.10473 1904.12679
CI	CI qqqq CI ℓℓqq CI tttt	_ 2 e, µ ≥1 e,µ	2 j ≥1 b, ≥1 j	– – Yes	37.0 36.1 36.1	Λ Λ Λ		2.57 TeV		21.8 TeV η_{LL}^- 40.0 TeV η_{LL}^- $ C_{4t} = 4\pi$	1703.09127 1707.02424 1811.02305
MD	Axial-vector mediator (Dirac Colored scalar mediator (Di $VV_{\chi\chi}$ EFT (Dirac DM) Scalar reson. $\phi \rightarrow t\chi$ (Dirac	cDM) 0 e, μ racDM) 0 e, μ 0 e, μ cDM) 0-1 e, μ	$\begin{array}{c} 1-4 \ j \\ 1-4 \ j \\ 1 \ J, \leq 1 \ j \\ 1 \ b, \ 0\text{-}1 \ J \end{array}$	Yes Yes Yes Yes	36.1 36.1 3.2 36.1	m _{med} m _{med} M _* m _{\$\$}	1 700 GeV	.55 TeV 1.67 TeV 3.4 TeV		$\begin{array}{l} g_q = 0.25, \ g_\chi = 1.0, \ m(\chi) = 1 \ {\rm GeV} \\ g = 1.0, \ m(\chi) = 1 \ {\rm GeV} \\ m(\chi) < 150 \ {\rm GeV} \\ y = 0.4, \ \lambda = 0.2, \ m(\chi) = 10 \ {\rm GeV} \end{array}$	1711.03301 1711.03301 1608.02372 1812.09743
ГО	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen	1,2 e 1,2 μ 2 τ 0-1 e,μ	≥ 2 j ≥ 2 j 2 b 2 b	Yes Yes - Yes	36.1 36.1 36.1 36.1	LQ mass LQ mass LQ ⁴ mass LQ ⁴ mass	1. 1 1.03 TeV 970 GeV	.4 TeV .56 TeV /		$\begin{split} \beta &= 1 \\ \beta &= 1 \\ \mathcal{B}(\mathrm{LQ}_3^u \to b \tau) &= 1 \\ \mathcal{B}(\mathrm{LQ}_3^d \to t \tau) &= 0 \end{split}$	1902.00377 1902.00377 1902.08103 1902.08103
Heavy quarks	$ \begin{array}{c} VLQ\;TT \rightarrow Ht/Zt/Wb+Z\\ VLQ\;BB \rightarrow Wt/Zb+X\\ VLQ\;T_{5/3}T_{5/3}T_{5/3} \rightarrow Wt-VLQ\;Y \rightarrow Wb+X\\ VLQ\;Y \rightarrow Wb+X\\ VLQ\;B \rightarrow Hb+X\\ VLQ\;QQ \rightarrow WqWq \end{array} $	X multi-channe multi-channe + X $2(SS)/\ge 3 e,\mu$ 1 e,μ 0 $e,\mu, 2 \gamma$ 1 e,μ	$a \ge 1 \ b, \ge 1 \ j$ $a \ge 1 \ b, \ge 1 \ j$ $\ge 1 \ b, \ge 1 \ j$ $\ge 1 \ b, \ge 1 \ j$ $\ge 4 \ j$	Yes Yes Yes Yes	36.1 36.1 36.1 36.1 79.8 20.3	T mass B mass T _{5/3} mass Y mass B mass Q mass	1.3 1.34 1.21 690 GeV	7 TeV 4 TeV 1.64 TeV 1.85 TeV TeV		$ \begin{array}{l} & \mathrm{SU(2) \ doublet} \\ & \mathrm{SU(2) \ doublet} \\ & \mathcal{B}(T_{5/3} \rightarrow Wt) = 1, \ c(T_{5/3} \ Wt) = 1 \\ & \mathcal{B}(Y \rightarrow Wb) = 1, \ c_R(Wb) = 1 \\ & \kappa_B = 0.5 \end{array} $	1808.02343 1808.02343 1807.11883 1812.07343 ATLAS-CONF-2018-024 1509.04261
Excited fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton ν^*	- 1 γ - 3 e, μ 3 e, μ, τ	2 j 1 j 1 b, 1 j - -		139 36.7 36.1 20.3 20.3	q* mass g* mass b* mass (* mass v* mass		5.3 T 2.6 TeV 3.0 TeV 1.6 TeV	6.7 TeV eV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	ATLAS-CONF-2019-007 1709.10440 1805.09299 1411.2921 1411.2921
Other	Type III Seesaw LRSM Majorana ν Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$ Multi-charged particles Magnetic monopoles	$1 e, \mu 2 \mu 2,3,4 e, \mu (SS 3 e, \mu, \tau - - - - - - - - - -$	$\geq 2j$ $2j$ $=$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$ $-$	Yes 	79.8 36.1 36.1 20.3 36.1 34.4	Nº mass N _R mass H ^{±±} mass H ^{±±} mass multi-charged particle mass monopole mass	560 GeV 870 GeV 400 GeV 3 1.22	3.2 TeV TeV 2.37 TeV		$\begin{split} m(W_R) &= 4.1 \text{ TeV}, g_L = g_R \\ \text{DY production} \\ \text{DY production}, \mathcal{B}(H_L^{zz} \to \ell\tau) = 1 \\ \text{DY production}, g = 5e \\ \text{DY production}, g = 1g_D, \text{spin } 1/2 \end{split}$	ATLAS-CONF-2018-020 1809.11105 1710.09748 1411.2921 1812.03673 1905.10130
	vs = 8 lev	partial data	full da	ata		10 ⁻¹		1	10	Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown. †Small-radius (large-radius) jets are denoted by the letter j (J).

The University of Manchester

Figure 1.1: Pictorial view of the Bridge Method.

- Heavy Vector Triplet arXiv:1402.4431v2
 - Effective Lagrangian with additional fields V^{+,0,-}.
 - Can tune mass, couplings to fermions and bosons.
 - Two benchmark scenarios
 - A: weakly coupled extended gauge symmetry
 - B: strongly coupled minimal composite higgs model

Epiphany, 7-10 Jan. 2020

Di-boson resonance

"bulk" RS graviton with warped extra dimension

Phys.Rev.D76:036006,2007

- Extension of KK graviton in RS1 framework with SM particles extending into the "bulk".
- Couplings to light fermions suppressed.
- gg fusion dominant production channel.
- High BR of G* VV.

Narrow di-boson resonances

Production and decay of heavy resonances:

- quark-antiquark annihilation
- gluon—gluon fusion
- Vector Boson Fusion

Experimental signatures

- Semi-leptonic final state
 - vvqq, lvqq, llqq
- Topologies:
 - Boosted: V->J large-R jet
 - Resolved: V->jj small-R jets
- fully hadronic JJ

EXPERIMENT

VV->JJ resonances

- Fully hadronic final state.
 - Look for two large R jets, consistent with hadronically decaying W or Z.
 - Sensitive to resonances above about 1.4 TeV

Boosted jets: Increasing transverse momentum

Bump hunt in di-jet invariant mass spectrum.

VV->JJ resonances

Model	Signal Region	Excluded mass range [TeV]		
	WW	1.3–2.9		
HVT model A, $g_V = 1$	WZ	1.3–3.4		
	WW + WZ	1.3–3.5		
	WW	1.3–3.1		
HVT model B, $g_V = 3$	WZ	1.3–3.6		
	WW + WZ	1.3–3.8		
	WW	1.3–1.6		
Bulk RS, $k/\overline{M}_{Pl} = 1$	ZZ	none		
	WW + ZZ	1.3–1.8		

No excess observed

PERIMENT

- Limits on HVT (spin-1) Graviton models (spin-2)
- Competitive limits compared to combination of 36fb⁻¹ analysis on (all channels). arXiv:1808.02380

- Search for di-jet resonances.
- Full Run-2 dataset, 139fb⁻¹
- Inclusive di-jet search and dedicated di-b-jet signature.

arXiv:1910.08447

dijet event with m_{jj} =9.5 TeV

Di-jet

Improved b tagging:

b-jets identified with deep-learning neural networks, operating point $\varepsilon_{\rm b}$ =77% (for *tt* events).

• Correction factors for $\varepsilon_{b}(p_{t})$ derived from data and MC.

- Event tagging efficiency mass and model dependent.
- Reduce dominant QCD background by cutting on rapidity separation of jets.

SЕ

20

- Di-jet SM Di-jet mass spectrum described with parametric function and validated with data-driven methods.
 - For b-tagged jets CR are defined with inverted b-tag requirements.
 - Quantify significance of any access with bump-hunter.
 - No excess found.

MANCHESTER

Set limits on BSM models & Gaussian signals

Di-jet

No excess found, set limits on BSM models.

Catagory	Model	Lower limit on signal mass at 95% CL			
Category	WIOUCI	Observed	Expected		
	q^*	6.7 TeV	6.4 TeV		
	QBH	9.4 TeV	9.4 TeV		
Inclusivo	W'	4.0 TeV	4.2 TeV		
Inclusive	W^*	3.9 TeV	4.1 TeV		
	DM mediator Z' , $g_q = 0.20$	3.8 TeV	3.8 TeV		
	DM mediator Z' , $g_q = 0.50$	4.6 TeV	4.9 TeV		
1 <i>b</i>	b^*	3.2 TeV	3.1 TeV		
	DM mediator $Z' g_q = 0.20$	2.8 TeV	2.8 TeV		
26	DM mediator Z' , $g_q = 0.25$	2.9 TeV	3.0 TeV		
20	SSM Z' ,	2.7 TeV	2.7 TeV		
	graviton, $k/\overline{M}_{\rm PL} = 0.2$	2.8 TeV	2.9 TeV		

Table 2: The lower limits on the masses of benchmark signals at 95% CL.

Alexander Oh, University of Manchester

Epiphany, 7-10 Jan. 2020

• Search for resonances in transverse mass mT $^{(*)}$ in lepton (e, μ) + MET channel.

W'

- Full Run-2 data-set, 139fb⁻
- Acceptance between 79% and 44% depending on channel and W' mass.
 - high pT muon selection optimised.
- No excess observed, limits on W' models.

(*)
$$m_{\rm T} = \sqrt{2 \, p_{\rm T} \, E_{\rm T}^{\rm miss} \, (1 - \cos \phi_{\ell \nu})}$$

Phys. Rev. D 100 (2019) 052013 DOI: 10.1103/PhysRevD.100.052013

Alexander Oh, University of Manchester

Phys. Rev. D 100 (2019) 052013 DOI: 10.1103/PhysRevD.100.052013

W'

ATLAS

Limits on

- SSM model W' (6.0 TeV observed, 5.8 TeV expected)
- Varying Γ/m ratios (1% to 15%)
- Visible cross section above m_T threshold.

Heavy Neutrino search in boosted topology

- Seesaw mechanism to explain neutrino masses, models predict righthanded heavy W'_R and a heavy neutrino N_R .
- This search for $m(W_R) >> m(N_R).$
 - N_R boosted decay.
 - Signature same isolated lepton and fat-jet + embedded lepton, same flavour.
 - Observable $m_{inv}(J,I_1,I_2)$:

Heavy Neutrino search in boosted topology

- Event count in signal region consistent with background expectation.
- Derive mass limits on N_R and W_R .

	Electron Channel	Muon Channel
Signal ($m_{W_{R}} = 3 \text{ TeV}, m_{N_{R}} = 150 \text{ GeV}$)	346^{+48}_{-75}	411^{+36}_{-48}
Signal ($m_{W_{\rm R}} = 3$ TeV, $m_{N_{\rm R}} = 300$ GeV)	471_{-69}^{+42}	429_{-40}^{+29}
Signal ($m_{W_{\rm R}} = 4$ TeV, $m_{N_{\rm R}} = 400$ GeV)	66^{+6}_{-10}	57^{+4}_{-4}
Expected background	$2.8_{-0.7}^{+0.5}$	$1.9^{+0.5}_{-0.7}$
Observed events	8	4
Significance	2.4σ	1.2σ
<i>p</i> -value	0.0082	0.12

Phys. Lett. B 798 (2019) 134942

17

Heavy Neutrino search in boosted topology

- Derive mass limits on N_R and W_R .
 - = m(W_R) > 4.8 TeV (e- channel)
 - = $m(W_R) > 5.0 \text{ TeV} (\mu \text{ channel})$
- Complementary results to previous analysis using resolved jets.

MANCHESTER 1824

Δ

- Search for narrow resonances in the dilepton (electron or muon) invariant mass spectrum
- Signal models:
 - generic Breit-Wigner signals
 - **Ζ'** (ψ, X, SSM), **Heavy** Vector Triplet model
- Selection of two high p_T isolated leptons.

 $m_{ee} = 4.06 \text{TeV}$

PERIMENT

7'

- Improvements in lepton reconstruction.
 - Improved ECAL cell-clustering.
 - ID and muon tracking alignment.
- Main background Drell-Yan Z production.
- Background estimation with fit, functional form determined from template fits.
- Dominant uncertainty:
 - "spurious signal"/background modelling.
 - Electron ID, muon quality

Ζ'

- Better limits compared to previous studies
 - data-set increased 4 fold
 - optimization of lepton reconstruction

	Lower limits on $m_{Z'}$ [TeV]						
Model	e	e	$\mu\mu$		$\ell\ell$		
	obs	exp	obs	exp	obs	exp	
$\overline{Z'_{\psi}}$	4.1	4.3	4.0	4.0	4.5	4.5	
Z'_{χ}	4.6	4.6	4.2	4.2	4.8	4.8	
$Z'_{\rm SSM}$	4.9	4.9	4.5	4.5	5.1	5.1	

Leipinany, / - is sam. 2020

EXPERIMENT

Dark Matter Summary

• Summary plot including di-jet (37fb⁻¹), di-lepton and E_T miss.

Displaced jets

- Search for long-lived particles, predicted by many BSM models (eg. SUSY, hidden sector, neutral naturalness)
- Datase 33fb⁻¹ at 13 TeV.
- Topology: one s decay in ID, and one s decay in muon spectrometer (MS).
 - s decay preferable to bb, cc ,ττ
 - Use special reconstruction methods, dedicated trigger chains.
 - Sensitive for $O(cm) < c\tau O(m)$.
- Main backgrounds:
 - ID: material interactions
 - MS: Multi-jet, punch through

arXiv:1911.12575

Epiphany, 7-10 Jan. 2020

Displaced jets

 Background estimated from data with CR: 1.2 ± 0.2 (stat) ± 0.3 (sys)

- Main signal systematic from displaced vertex reco.
- Observe 1 event passing all signal criteria in data.

arXiv:1911.12575

Displaced jets

- Derive limits on (σ BR) on various signal masses.
- Orthogonal to MS and ID only analyses.

 Combination with MS and ID only analyses improves limits.

Collimated fermion jets

- Search for long-lived dark photons produced from the decay of a Higgs boson or a heavy scalar boson.
- Dataset 36fb⁻¹ at 13 TeV.
- Decaying into displaced collimated Standard Model fermions (leptons or hadrons).
- Improved background rejection makes fully hadronic channel accessible.

EXPERIMENT

Collimated fermion jets

- Dark Photon signature searched for in outer calorimeter/MS
 - muons: look for 2 close by muons in MS
 - hadrons/electrons: look for jets with large Had/EM ratio.
- Selection based on BDT on DP jet candidate:
 - muonic jet, main background cosmics.
 - hadronic jet, main background multijet production.
- Data driven background estimation with CR.

Collimated fermion jets

ω LILLE 10-5 No excess observed. Limits on kinetic mixing 10^{-6} parameter ε vs dark photon ATLAS mass. B(H) = 20 %FRVZ Model 10-B(H) = 10%90% CL exclusions B(H) = 5 % $L = 36.1 \text{ fb}^{-1}$ $\tau \propto \left(\frac{10^{-4}}{\epsilon}\right)^2 \left(\frac{100 \text{ MeV}}{m_{\gamma_{\rm d}}}\right)$ B(H) = 1% $m_{H} = 125 \text{ GeV}$ B(H) = 10 % Run-1 prompt $H \rightarrow 2\gamma_d + X$ B(H) = 10 % Run-1 displaced 10^{-8} 0.5 0.6 0.7 0.80.9 1 0.3 0.4 2.0 Dark Photon Mass [GeV] [dd] (X+⁺, ⁺/2 Limits on 95% CL Limit on $\sigma \times B(H \rightarrow 2\gamma_d + X)$ [pb] μDPJ-μDPJ channel hDPJ-hDPJ channel production m_u = 800 GeV m_u = 800 GeV $m_{\gamma} = 400 \text{ MeV}$ 10 m_γ = 400 MeV 10 95% CL Limit on σ×B(H→ 0 $\sigma \times B = 5 \text{ pb}$ $\sigma \times B = 5 \text{ pb}$ cross section times BR. 10 ····· expected limit ····· expected limit ATLAS ATLAS — observed limit — observed limit 10⁻² 10^{-2} $36.1 \text{ fb}^{-1} \sqrt{\text{s}} = 13 \text{ TeV}$ expected $\pm 2\sigma$ $36.1 \text{ fb}^{-1} \sqrt{\text{s}} = 13 \text{ TeV}$ expected $\pm 2\sigma$ expected ± 1 or expected ± 1 or 10^{2} 10^{3} 10^{2}

Dark photon ct [mm]

10

1

 10^3

Dark photon ct [mm]

10

1

MANCHESTER

Summary

- Discussed a few recent updates:
 - VV->JJ resonances (arXiv:1906.08589)
 - Di-jet resonances (arXiv:1910.08447)
 - W' (arXiv:1906.05609)
 - Heavy neutrino (arXiv:1904.12679)
 - Z' (arXiv:1903.06248)
 - Displaced jets (arXiv:1911.12575)
 - Collimated fermion jets (arXiv:1909.01246)
- Many more results with different final states expected with the full run-2 dataset.
- Run-3 increase centre-of-mass energy and luminosity.
 - Exploit upgrades in detector and trigger capabilities!
- Awaiting the unexpected!