PARTICLE CORRELATIONS AT LHCb

Miłosz Zdybał

Institute of Nuclear Physics PAN, Kraków, Poland

on behalf of the LHCb Collaboration

XXVI Cracow EPIPHANY Conference, 7-10 January 2020

QUANTUM CORRELATIONS IN PARTICLE PHYSICS

- Goldhaber, Goldhaber, Lee and Pais, 1959
	- Bevalac/LBL experiment in Berkeley
	- Observation of the resonances by comparing Q distribution of unlike-sign pion pairs to same-sign – unexpected angular correlation [Phys. Rev. 120, 300]
- Correlations in four-momenta of indistinguishable particles emitted from the same source

$$
Q_{12} = \sqrt{-(q_1 - q_2)^2} = \sqrt{M^2 - 4\mu^2}
$$

- Total wave function:
	- Bosons: symmetrization Bose-Einstein Correlations
	- Fermions: anti-symmetrization Fermi-Dirac Correlations

Useful tool to probe spatial and temporal structure of hadronization region

Miłosz Zdybał

LHCb EXPERIMENT

- Single arm spectrometer fully instrumented in forward region
- Designed to study CP violation in B, but also fixed target, heavy ion physics
- Precision coverage unique for LHCb: $2 < \eta < 5$
- Accurate momentum measurements
- Very good particle identification over momentum range 2 GeV/c 100 GeV/c
- Complementary results with respect to other LHC experiments

XXVI Cracow EPIPHANY Conference, 7-10 January 2020

Miłosz Zdybał

BEC ANALYSES AT LHCb

- Published:
	- BEC for pions in proton-proton collisions at 7 TeV [JHEP 12 (2017) 025]
- Ongoing:
	- BEC for pions in proton-lead collisions at 5 TeV (in multiplicity and k_T bins)
	- 3-body correlations in proton-proton collisions at 7 TeV

4

TWO-PION CORRELATION FUNCTION

DEFINITION

•
$$
C_2(q_1, q_2) = \frac{P(q_1, q_2)}{P(q_1)P(q_2)}
$$

EXPERIMENTALLY

$$
C_2(Q) = \frac{N(Q)^{DATA}}{N(Q)^{REF}}
$$
 BEC present
No BEC (mix, MC, unlike)

Reference sample: event mix - different events, same VELO multiplicity

Parameterization:

Levy parameterization with $\alpha = 1$ (Cauchy) + long-range correlations

$$
C_2(Q) = N(1 + \lambda e^{-|RQ|^{\alpha}}) \times (1 + \delta \cdot Q)
$$

- *R* the radius of a spherical static source
- λ chaoticity parameter
	- (0 coherent source, 1 chaotic source)
- *N* normalization factor
- δ long-range correlations

DATA SAMPLES AND CUTS THE SAME AS FOR TWO-PION CORRELATIONS [JHEPI2(2017)025]

[JHEP12(2017)025]

MULTIPLICITY BINS AND REFERENCE SAMPLE

- Effect depends on charged particle multiplicity
- Analysis performed in three bins of VELO track multiplicity per PV

- Reference sample: event mix
	- The same multiplicity, each particle from different event

[JHEP12(2017)025]

7

 1.5

 $\overline{2}$

 Q [GeV/ c^2]

XXVI Cracow EPIPHANY Conference, 7-10 January 2020

Q [GeV/ c^2]

1.5

 $0.7\frac{E}{0}$

.6

0.7

 0.5

 $\rm r_d(Q)$ / (0.005 $\rm GeV/c^2)$

Miłosz Zdybał

1.5

Q [GeV/ c^2]

0.5

0.7

 Ω

 0.5

Direct comparison between experiments not straightforward *(different η ranges).*

A trend compatible with previous observations at LEP and the other LHC experiments and with some theoretical models. ^R and λ parameters measured in the forward region slightly lower wrt e.g. ATLAS [Eur. Phys. J. C75 (2015) 466]

THREE-PION CORRELATIONS

Three-body correlation function:

•
$$
C_3(q_1, q_2, q_3) = \frac{P(q_1, q_2, q_3)}{P(q_1)P(q_2)P(q_3)}
$$

• Parameterization (within Core-Halo model) [T. Novak, arXiv:1801.03544]:

$$
C_3^{(fit)} = N(1 + \delta Q_{12})(1 + \delta Q_{13})(1 + \delta Q_{23})G_3C_3^{(0)}(Q_{12}, Q_{13}, Q_{23})
$$

- G_3 : Coulomb corrections factorized according to Riverside method [Phys. Rev. C 92, 014902]
- Levy-type $\mathcal{C}_3^{(0)}$ function of the Q_{12} , Q_{13} , Q_{23} of the pion triplet

•
$$
C_3^{(0)}(Q_{12}, Q_{13}, Q_{23}) = 1 + \ell_3 e^{-0.5(|Q_{12}R|^{\alpha} + |Q_{13}R|^{\alpha} + |Q_{23}R|^{\alpha})} + \ell_2 (e^{-|Q_{12}R|^{\alpha}} + e^{-|Q_{13}R|^{\alpha}} + e^{-|Q_{13}R|^{\alpha}})
$$

 λ_2 , R: from the previous analysis on the two-pion BEC [T. Novak, arXiv:1801.03544], [JHEP12(2017)025]

$$
\lambda_3 = C_3(Q_{12} = Q_{13} = Q_{23} \to 0) - 1 = \ell_3 + 3\ell_2
$$

Miłosz Zdybał

Only the idea of the analysis presented because results are not published yet!

THREE-PION CORRELATIONS CORE -HALO MODEL

- We try to interpret the results of analysis within the framework of the core-halo model [Z. Phys. C71, 491 (1996), Eur. Phys. J. C (1999) 9, 275] following the idea from Phenix experiment [T. Novak, arXiv:1801.03544]
- Core
	- Direct production of pions
	- Hydrodynamic evolution or particle production from excited strings, followed by subsequent re-scattering of the particles
- Halo
	- Core is surrounded by pions emitted from the decay of long-lived hadronic resonances (ω , η , η' , K^0) which are treated as belonging to the hadronic source

Core

Halo

11

THREE-PION CORRELATIONS CORE -HALO MODEL – WHAT C AN WE MEASURE

- Analysis of $C_3(Q_{12}, Q_{13}, Q_{23})$ for the diagonal $Q_{12} = Q_{13} = Q_{23}$
- Fraction of the core

•
$$
f_c = \frac{N_{core}}{N_{core} + N_{halo}}
$$

- We may directly determine from the two- and three-pion correlations
- Partially coherent emission from the core

• $p_c = \frac{N_{coherent}}{N_{on} + N_{ion}}$ $N_{coherent}{\rm +}N_{incoherent}$

• Correlation strength depends on partial coherence (within core-halo model)

- Values of f_c and p_c can be determined using λ_2 and λ_3
- Core-halo independent parameter

•
$$
\kappa_3 = 0.5 (\lambda_3 - 3\lambda_2) / \lambda_2^{3/2} = 1
$$

• The deviation of κ_3 from one may indicate extra effects in the core, for example not fully thermalized core, or partial coherence in the core

STATUS OF THE 3-PION ANALYSIS

- $\bullet\;$ Fit is ready using $\mathcal{C}^{(fit)}_3(Q_{12},Q_{13},Q_{23})$ (Gamow factor used for factorized Coulomb correction)
- Dependence on N_{ch} (dependence on k_T also planned)
- Central values of following parameters are measured:
	- λ_2 , λ_3 , f_c , p_c , κ_3
- The systematics is still to be done (ongoing)!

CONCLUSIONS

First measurement of BEC in the forward region 2 < *η* < 5

- measured correlation parameters slightly lower as compared to results in central *η* region
- 3-pion BEC analysis
- Interpretation within core-halo model
- Work ongoing

LHCb shows a potential to perform a set of BEC analyses in unique kinematic region, complementary to the central rapidity detectors.

BACKUP SLIDES

BEC – CLONES AND GHOSTS

Cloned tracks

two or more tracks reconstructed by mistake from the hits originating from a single particle

- Cloned pairs of tracks with small opening angle
	- [→] *in low-Q region*
	- [→] *may affect BEC signal*

Ghost tracks

wrongly reconstructed tracks which combine the hits deposited by multiple particles

● Ghosts populate wide *Q* range

Cloned track True track Ghost track Magnet VELO T1 T2 T₃

ghosts / clones may affect the BEC signal forming pairs with small opening angle \rightarrow low Q not perfectly simulated [→] *cannot be fully corrected by DR*

Effect from ghosts present in LIKE and UNLIKE

• controled by double ratio for unlike-sign pairs corrected for Coulomb effect *(no BEC effect)*

Contamination from clones investigated looking at tracks slope differences at $Q \rightarrow 0$

BEC – TRACK PAIR SELECTION

Ghost tracks

- most of ghosts already removed [→] *tracks with high probability to be a ghost removed*
- additional cut: *if tracks share same VELO hits* \rightarrow *keep one with best* x^2
	- → **after selection ghosts are under control for** *Q* **> 0.05 GeV/c²**
	- → **systematic uncertainty low compared to dominant contributions**

Cloned tracks

- clones removed by cut on : $|\Delta t_x|$ < 0.3 mrad & $|\Delta t_y|$ < 0.3 mrad
	- *(t - tangent of the track momenta of two particles)*
	- \rightarrow contribution from clones marginal for $Q > 0.05$ GeV/c²

Two-particle efficiencies under control in *Q* **> 0.05 GeV/c²**

→ analysis in **0.05 GeV/c² <** *Q* **< 2.0 GeV/c²**

Coulomb effect

Removed with Gamov penetration factor for *Q* distribution in data:

XXVI Cracow EPIPHANY Conference, 7-10 January 2020 $G_2(Q)=\frac{2\pi\zeta}{e^{\frac{2\pi}{3}}\zeta}$ where $-\zeta=\pm\frac{\alpha m}{Q}$

→ **systematics due to Coulomb correction found to be negligible**

BEC - SYSTEMATICS

THREE-PION CORRELATIONS

Source function: Levy-type source

$$
\mathcal{S}(r) = \mathcal{L}(\alpha, R, r) = \frac{1}{(2\pi)^3} \int d^3q e^{iqr} e^{-\frac{1}{2}|qR|^{\alpha}}
$$

Three-body correlation function:

$$
C_3(q_1, q_2, q_3) = \frac{P(q_1, q_2, q_3)}{P(q_1)P(q_2)P(q_3)}
$$

Parameterization (fit function) [T. Novak, arXiv:1801.03544]:

$$
C_3^{(fit)} = N(1 + \delta Q_{12})(1 + \delta Q_{13})(1 + \delta Q_{23})G_3C_3^{(0)}(Q_{12}, Q_{13}, Q_{23})
$$

- δ , N: background and normalization
- Levy-type $\mathcal{C}_3^{(0)}$ function of the Q_{12} , Q_{13} , Q_{23} of the pion triplet

$$
C_3^{(0)}(Q_{12}, Q_{13}, Q_{23}) = 1 + \ell_3 e^{-0.5(|Q_{12}R|^{\alpha} + |Q_{13}R|^{\alpha} + |Q_{23}R|^{\alpha})} + \ell_2(e^{-|Q_{12}R|^{\alpha}} + e^{-|Q_{13}R|^{\alpha}} + e^{-|Q_{23}R|^{\alpha}})
$$

- λ_2 , R: from the previous analysis on the two-pion BEC [T. Novak, arXiv:1801.03544], [JHEP12(2017)025]
- $\alpha = 1$: Cauchy

Only the methodology of the analysis because results are not published yet!

THREE-PION CORRELATIONS

- Analysis of $C_3(Q_{12},Q_{13},Q_{23})$ for the diagonal $Q_{12} = Q_{13} = Q_{23}$
- Three-pion correlation strength:

$$
\delta_3 = C_3(Q_{12} = Q_{13} = Q_{23} \to 0) - 1 = \ell_3 + 3\ell_2
$$

- Coulomb corrections
	- factorized according to Riverside method [Phys. Rev. C 92, 014902]
	- $G_3(Q_{12}, Q_{13}, Q_{23}) \approx G_2(Q_{12}) G_2(Q_{13}) G_2(Q_{23})$
	- Thus we correct $C_2(Q_{12})$, $C_2(Q_{13})$, $C_2(Q_{23})$ independently (the same as for two-pion analysis) using Gamow factor