PARTICLE CORRELATIONS AT LHCb

Miłosz Zdybał

Institute of Nuclear Physics PAN, Kraków, Poland

on behalf of the LHCb Collaboration

XXVI Cracow EPIPHANY Conference, 7-10 January 2020

QUANTUM CORRELATIONS IN PARTICLE PHYSICS

- Goldhaber, Goldhaber, Lee and Pais, 1959
 - Bevalac/LBL experiment in Berkeley
 - Observation of the resonances by comparing Q distribution of unlike-sign pion pairs to same-sign – unexpected angular correlation [Phys. Rev. 120, 300]
- Correlations in four-momenta of indistinguishable particles emitted from the same source

$$Q_{12} = \sqrt{-(q_1 - q_2)^2} = \sqrt{M^2 - 4\mu^2}$$

- Total wave function:
 - Bosons: symmetrization Bose-Einstein Correlations
 - Fermions: anti-symmetrization Fermi-Dirac Correlations

• Useful tool to probe spatial and temporal structure of hadronization region

LHCb EXPERIMENT

- Single arm spectrometer fully instrumented in forward region
- Designed to study CP violation in B, but also fixed target, heavy ion physics
- Precision coverage unique for LHCb: $2 < \eta < 5$
- Accurate momentum measurements
- Very good particle identification over momentum range 2 GeV/c 100 GeV/c
- Complementary results with respect to other LHC experiments

Miłosz Zdybał

BEC ANALYSES AT LHCb

- Published:
 - BEC for pions in proton-proton collisions at 7 TeV [JHEP 12 (2017) 025]
- Ongoing:
 - BEC for pions in proton-lead collisions at 5 TeV (in multiplicity and k_T bins)
 - 3-body correlations in proton-proton collisions at 7 TeV

TWO-PION CORRELATION FUNCTION

DEFINITION

•
$$C_2(q_1, q_2) = \frac{P(q_1, q_2)}{P(q_1)P(q_2)}$$

EXPERIMENTALLY

$$C_2(Q) = \frac{N(Q)^{DATA}}{N(Q)^{REF}}$$
 BEC present
No BEC (mix, MC, unlike

 Reference sample: event mix – different events, same VELO multiplicity

• Parameterization:

• Levy parameterization with $\alpha = 1$ (Cauchy) + long-range correlations

$$C_2(Q) = N(1 + \lambda e^{-|RQ|^{\alpha}}) \times (1 + \delta \cdot Q)$$

- R the radius of a spherical static source
- λ chaoticity parameter
 - (0 coherent source, I chaotic source)
- N normalization factor
- δ long-range correlations

DATA SAMPLES AND CUTS THE SAME AS FOR TWO-PION CORRELATIONS [JHEP12(2017)025]

•	Data 2011@7TeV	parameter	value
	MinimumBias	η	2.0 – 5.0
•	MC 2011	Track χ^2	< 2.0
		Р	> 2.0 GeV
	• NoBias	Рт	> 0.1 GeV
	 PYTHIA 8, ~20M events 	IP	< 0.4 mm
	BEC effect switched off		

[JHEP12(2017)025]

6

MULTIPLICITY BINS AND REFERENCE SAMPLE

- Effect depends on charged particle multiplicity
- Analysis performed in three bins of VELO track multiplicity per PV

- Reference sample: event mix
 - The same multiplicity, each particle from different event

[JHEP12(2017)025]

RESULTS ON TWO-PION CORRELATIONS

	Activity	R [fm]	λ
$C(0)^{DATA}$	Low	$1.01 \pm 0.01 \pm 0.10$	$0.72 \pm 0.01 \pm 0.05$
$r_d(Q) = \frac{\sigma(Q)}{\Gamma(Q)^{MC}}$	Medium	$1.48 \pm 0.02 \pm 0.17$	$0.63 \pm 0.01 \pm 0.05$
MC without BEG	High	$1.80 \pm 0.03 \pm 0.16$	$0.57 \pm 0.01 \pm 0.03$

Systematic uncertainty (~10%) dominated by the generator tunings and pile-up effects

Direct comparison between experiments not straightforward (different η ranges).

A trend compatible with previous observations at LEP and the other LHC experiments and with some theoretical models. *R* and λ parameters measured in the forward region slightly lower wrt e.g. ATLAS [Eur. Phys. J. C75 (2015) 466]

• Three-body correlation function:

$$C_3(q_1, q_2, q_3) = \frac{P(q_1, q_2, q_3)}{P(q_1)P(q_2)P(q_3)}$$

• Parameterization (within Core-Halo model) [T. Novak, arXiv:1801.03544]:

•
$$C_3^{(fit)} = N(1 + \delta Q_{12})(1 + \delta Q_{13})(1 + \delta Q_{23})G_3C_3^{(0)}(Q_{12}, Q_{13}, Q_{23})$$

- G₃: Coulomb corrections factorized according to Riverside method [Phys. Rev. C 92, 014902]
- Levy-type $C_3^{(0)}$ function of the Q_{12}, Q_{13}, Q_{23} of the pion triplet

$$C_{3}^{(0)}(Q_{12},Q_{13},Q_{23}) = 1 + \ell_{3}e^{-0.5(|Q_{12}R|^{\alpha} + |Q_{13}R|^{\alpha} + |Q_{23}R|^{\alpha})} + \ell_{2}(e^{-|Q_{12}R|^{\alpha}} + e^{-|Q_{13}R|^{\alpha}} + e^{-|Q_{13}R|^{\alpha}})$$

• λ_2 , *R*: from the previous analysis on the two-pion BEC [T. Novak, arXiv:1801.03544], [JHEP12(2017)025]

•
$$\lambda_3 = C_3(Q_{12} = Q_{13} = Q_{23} \to 0) - 1 = \ell_3 + 3\ell_2$$

Miłosz Zdybał

Only the idea of the analysis presented because results are not published yet!

- We try to interpret the results of analysis within the framework of the core-halo model [Z. Phys. C71, 491 (1996), Eur. Phys. J. C (1999) 9, 275] following the idea from Phenix experiment [T. Novak, arXiv:1801.03544]
- Core
 - Direct production of pions
 - Hydrodynamic evolution or particle production from excited strings, followed by subsequent re-scattering of the particles
- Halo
 - Core is surrounded by pions emitted from the decay of long-lived hadronic resonances (ω , η , η ', K^0) which are treated as belonging to the hadronic source

THREE-PION CORRELATIONS CORE-HALO MODEL – WHAT CAN WE MEASURE

- Analysis of $C_3(Q_{12}, Q_{13}, Q_{23})$ for the diagonal $Q_{12} = Q_{13} = Q_{23}$
- Fraction of the core

•
$$f_c = \frac{N_{core}}{N_{core} + N_{halo}}$$

- We may directly determine from the two- and three-pion correlations
- Partially coherent emission from the core

• $p_c = \frac{N_{coherent}}{N_{coherent} + N_{incoherent}}$

• Correlation strength depends on partial coherence (within core-halo model)

- Values of f_c and p_c can be determined using λ_2 and λ_3
- Core-halo independent parameter

•
$$\kappa_3 = 0.5 (\lambda_3 - 3\lambda_2) / \lambda_2^{3/2} = 1$$

• The deviation of κ_3 from one may indicate extra effects in the core, for example not fully thermalized core, or partial coherence in the core

STATUS OF THE 3-PION ANALYSIS

- Fit is ready using $C_3^{(fit)}(Q_{12}, Q_{13}, Q_{23})$ (Gamow factor used for factorized Coulomb correction)
- Dependence on N_{ch} (dependence on k_T also planned)
- Central values of following parameters are measured:
 - $\lambda_2, \lambda_3, f_c, p_c, \kappa_3$
- The systematics is still to be done (ongoing)!

CONCLUSIONS

First measurement of BEC in the forward region $2 < \eta < 5$

- measured correlation parameters slightly lower as compared to results in central η region
- 3-pion BEC analysis
- Interpretation within core-halo model
- Work ongoing

LHCb shows a potential to perform a set of BEC analyses in unique kinematic region, complementary to the central rapidity detectors.

BACKUP SLIDES

BEC – CLONES AND GHOSTS

Cloned tracks

two or more tracks reconstructed by mistake from the hits originating from a single particle

- Cloned pairs of tracks with small opening angle
 - \rightarrow in low-Q region
 - \rightarrow may affect BEC signal

Ghost tracks

wrongly reconstructed tracks which combine the hits deposited by multiple particles

• Ghosts populate wide *Q* range

g h h VELO T1 T2 T3

ghosts / clones may affect the BEC signal forming pairs with small opening angle $\rightarrow low Q$ not perfectly simulated $\rightarrow cannot be fully corrected by DR$

Effect from ghosts present in LIKE and UNLIKE

• controled by double ratio for unlike-sign pairs corrected for Coulomb effect (no BEC effect)

Contamination from clones investigated looking at tracks slope differences at $Q \rightarrow 0$

BEC - TRACK PAIR SELECTION

Ghost tracks

- most of ghosts already removed \rightarrow *tracks with high probability to be a ghost removed*
- additional cut: if tracks share same VELO hits \rightarrow keep one with best χ^2
 - \rightarrow after selection ghosts are under control for $Q > 0.05 \text{ GeV/c}^2$
 - \rightarrow systematic uncertainty low compared to dominant contributions

Cloned tracks

- clones removed by cut on : $|\Delta t_x| < 0.3 \text{ mrad} \quad \& \quad |\Delta t_y| < 0.3 \text{ mrad}$
 - (t tangent of the track momenta of two particles)
 - \rightarrow contribution from clones marginal for $Q>0.05~GeV/c^2$

Two-particle efficiencies under control in $Q > 0.05 \text{ GeV}/c^2$

 \rightarrow analysis in **0.05 GeV/c² < Q < 2.0 GeV/c²**

Coulomb effect

Removed with Gamov penetration factor for Q distribution in data:

 $\text{XXVI Cracow EPIPHANY Conference, 7-10 January 2020} G_2(Q) = \frac{2\pi\zeta}{e^2 \text{Theosz Zdybał}}, \text{ where } \zeta = \pm \frac{\alpha m}{Q}$

\rightarrow systematics due to Coulomb correction found to be negligible

BEC - SYSTEMATICS

Source	Low activity		Medium activity		High activity	
	$\Delta R \ [\%]$	$\Delta\lambda$ [%]	$\Delta R \ [\%]$	$\Delta\lambda$ [%]	$\Delta R \ [\%]$	$\Delta\lambda$ [%]
Generator tunings	6.6	4.3	8.9	3.5	6.5	1.5
PV multiplicity	5.9	5.8	6.1	4.5	3.9	4.3
PV reconstruction	1.8	0.1	1.4	1.2	0.1	< 0.1
Fake tracks	0.4	1.1	1.7	3.9	1.1	0.8
PID calibration	1.3	0.3	0.8	0.6	2.7	0.9
Requirement on pion PID	2.9	1.8	1.6	0.1	1.3	0.1
Fit range at low- Q	1.2	1.0	1.2	1.5	1.8	2.7
Fit range at high- Q	1.8	0.1	2.1	0.8	2.4	1.4
Total	9.8	7.6	11.4	7.3	8.8	5.6

• Source function: Levy-type source

•
$$S(r) = \mathcal{L}(\alpha, R, r) = \frac{1}{(2\pi)^3} \int d^3 q e^{iqr} e^{-\frac{1}{2}|qR|^{\alpha}}$$

• Three-body correlation function:

•
$$C_3(q_1, q_2, q_3) = \frac{P(q_1, q_2, q_3)}{P(q_1)P(q_2)P(q_3)}$$

• Parameterization (fit function) [T. Novak, arXiv:1801.03544]:

•
$$C_3^{(fit)} = N(1 + \delta Q_{12})(1 + \delta Q_{13})(1 + \delta Q_{23})G_3C_3^{(0)}(Q_{12}, Q_{13}, Q_{23})$$

- δ , N: background and normalization
- Levy-type $C_3^{(0)}$ function of the Q_{12}, Q_{13}, Q_{23} of the pion triplet

•
$$C_3^{(0)}(Q_{12}, Q_{13}, Q_{23}) = 1 + \ell_3 e^{-0.5(|Q_{12}R|^{\alpha} + |Q_{13}R|^{\alpha} + |Q_{23}R|^{\alpha})} + \ell_2 \left(e^{-|Q_{12}R|^{\alpha}} + e^{-|Q_{13}R|^{\alpha}} + e^{-|Q_{23}R|^{\alpha}} \right)$$

- λ_2 , *R*: from the previous analysis on the two-pion BEC [T. Novak, arXiv:1801.03544], [JHEP12(2017)025]
- $\alpha = 1$: Cauchy

Only the methodology of the analysis because results are not published yet!

- Analysis of $C_3(Q_{12}, Q_{13}, Q_{23})$ for the diagonal $Q_{12} = Q_{13} = Q_{23}$
- Three-pion correlation strength:

•
$$\lambda_3 = C_3(Q_{12} = Q_{13} = Q_{23} \to 0) - 1 = \ell_3 + 3\ell_2$$

- Coulomb corrections
 - factorized according to Riverside method [Phys. Rev. C 92, 014902]
 - $G_3(Q_{12}, Q_{13}, Q_{23}) \approx G_2(Q_{12})G_2(Q_{13})G_2(Q_{23})$
 - Thus we correct $C_2(Q_{12})$, $C_2(Q_{13})$, $C_2(Q_{23})$ independently (the same as for two-pion analysis) using Gamow factor