XXVI Epiphany conference

Exotic searches at LHCb

Mateusz Goncerz (IFJ-PAN) on behalf of the LHCb collaboration

- $W + c\bar{c}$, $W + b\bar{b}$ and $t\bar{t}$ production at 8 TeV
- Z production in association with two b-quarks at 13 TeV
 ongoing
- search for long-lived particles decaying to jet pairs at 7 and 8 TeV

LHCb detector

- single arm forward spectrometer
- general purpose detector in the forward region (2 < η < 5)
 - complementary to ATLAS and CMS

- excelent tracking
- excelent momentum resolution
- very good particle identification
- low pile-up

- sensitive to Standard Model and Beyond the Standard Model physics
- important test of perturbative QCD
 - PDF parametrization
- both high and low x-Bjorken regions accesible
 - $\bullet~W/Z$ production by colliding low- and high-x partons
 - low-x region still remains mostly unexplored
- top measurements possible by partial final state reconstruction

$W + c\bar{c}$, $W + b\bar{b}$ and $t\bar{t}$ production at 8 TeV

- published in Phys. Lett. B767 (2017) 110
- samples:
 - 2 fb⁻¹ of 8 TeV data
 - signal events from ALPGEN, showering with Pythia8
 - background events from Pythia8
 - W + jets, Z + jets, single-top, WZ, ZZ
- requirements:
 - two heavy-flavoured jets
 - $p_t > 12.5 \text{ GeV}$
 - $2.2 < \eta < 4.2$
 - single isolated electron or muon with high transverse momentum
 - $p_t > 20 \text{ GeV}$
 - $2.0 < \eta < 4.25$ (4.5) for electron (muon)
 - $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2} > 0.5$ for both jets

- jet tagging based on BDT response trained primarily on secondary vertex parameters
- JINST 10 (2015) P06013

- strategy:
 - four sub-samples according to lepton flavour and charge
 - simultanous fit of four variables to determine yield of each signal
 - invariant mass of the two jets
 - classifier trained to distinguish between $t\bar{t}$ and $W + b\bar{b}$ events
 - BDT(b|c) classifiers for each jet

Fit results for μ^+ sample.

- results:
 - good agreement with NLO predictions (MCFM NLO with PDF set CT10; black bars)
 - statistical uncertainty in dark yellow and total in bright yellow

sample	significance
$W^+ + bar{b}$	7.1σ
$W^- + b\bar{b}$	5.6σ
$W^+ + c\bar{c}$	4.7σ
$W^- + c\bar{c}$	2.5σ
tŦ	4.9σ

- advanced stage
- motivation:
 - search for exotics b', Z'
 - and Higgs
 - SM ZH(\rightarrow bb)
 - BSM pp \rightarrow H \rightarrow ZA \rightarrow bbll
 - PDF tuning
- samples:
 - 2 fb $^{-1}$ of 13 TeV data
 - signal and background from Madgraph at NLO
 - $t\bar{t}$, WZ, ZZ, W + $b\bar{b}$, Z + $q\bar{q}$, single top, inclusive $b\bar{b}$

- strategy:
 - muon channel (electron in the future)
 - background study using jet kinematics and underlying events
- preliminary studies show promising separation of main background source $(t\bar{t})$

Hidden Valley

- new particle sector introduced via additional gauge group
- unreachable because of energy barrier, but unstable v-particles may decay to Standard Model final states

- may coexist with other SM extensions like SUSY
- Higgs boson can play a role of a communicator between SM and Hidden Valley sector

•
$$H \rightarrow \pi_{v} (\rightarrow b\bar{b}) \pi_{v} (\rightarrow b\bar{b})$$

long-lived particles decaying to jet pairs at 7 and 8 TeV

- update of arXiv:1412.3021
- published in Eur. Phys. J. C77 (2017) 812
- focus on Hidden Valley pions produced in Higgs decays
- samples:
 - 2 fb⁻¹ of 7 and 8 TeV data
 - Monte Carlo from Pythia8
- requirements:
 - single displaced vertex with two associated jets
 - usually only one of the pions falls into the LHCb acceptance
 - dijet alligned with the vector from PV to the displaced vertex
 - distance between jets $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2} < 2.2$
 - suppressing back-to-back dijet background

- strategy:
 - $\pi_v
 ightarrow b\bar{b}$ dominates
 - subsamples with different π_v mass and lifetime
 - 25 GeV, 35 GeV, 43 GeV and 50 GeV for $\pi_{
 m v}
 ightarrow bar{b}$ events
 - 35 GeV for $\pi_{v} \rightarrow c\bar{c}$ and $\pi_{v} \rightarrow s\bar{s}$
 - 10 ps and 100 ps for $\pi_{
 m v}
 ightarrow bar{b}$ events
 - 10 ps for $\pi_v
 ightarrow c \bar{c}$ and $\pi_v
 ightarrow s \bar{s}$
 - background level strongly dependent on the distance of displaced vertex to the beam axis (R_{xy}) binned fit approach

8 TeV, background in blue, signal of strength 1 in green and best-fit signal in red.

- results:
 - no significant excess of signal in the data
 - upper limits on the signal strength at 95% confidence level set and reweighted for multiple lifetime hypotheses
 - $\mathcal{B}_{q\bar{q}} = \mathcal{B}\left(\pi_v \to q\bar{q}\right)$ assumed to be 100%, limits scale as $1/\left(\mathcal{B}_{q\bar{q}}\left(2 \mathcal{B}_{q\bar{q}}\right)\right)$

- jet measurements offer a great way to study both BSM and SM physics
- the cross-sections for production of W boson with jet pairs and $t\bar{t}$ pair production have been measured at 8 TeV and are in good agreement with NLO predictions
- a new search for Z' and b' at 13 TeV is underway and in advanced stage
- although no significant evidence for Hidden Valley pions has been observed, new constraints have been placed on the signal strength