Searching for BSM Higgs and Gauge Bosons Decaying to Two Tau Leptons Using 36 fb⁻¹ of Data Collected at √s=13 TeV with the ATLAS Detector

Janina Krzysiak

on behalf of ATLAS

Epiphany Conference 2020

motivation

- many BSM scenarios have an extended Higgs sector
 - Two-Higgs-Doublet Models (2HDMs) predict 5 Higgs bosons

- Type-II 2HDM corresponds to Higgs sector of the Minimal Supersymmetric Model
- one of several extra Higgs searches at ATLAS
- Z' bosons can arise from extensions of electroweak symmetry
 - sequential standard model
 - non-universal G(221) model

production and decay

- separate by resonance production mode:
 - Higgs b-associated production → b-tag category
 - Higgs gluon-gluon fusion → b-veto category
 - Z' Drell-Yan production → inclusive category

- separate by tau decay mode
 - lep-had and had-had channels
 - skip lep-lep very little improvement in sensitivity

event selection lep-had

- single-lepton trigger (40-120 GeV depending on data-taking period)
- leptonic tau:
 - matched to trigger
 - isolation criteria
- hadronic tau:
 - medium ID (BDT score)
 - pT>25 GeV and |η|<2.7
- $m_{\rm T}({\rm lep,MET}) =$ $= \sqrt{2p_{\rm T}^{\rm lep}\cdot{\rm MET}(1-\cos\Delta\phi({\rm lep,MET}))} < 40~{\rm GeV}$

• 80< $m_{\rm vis}$ <110 GeV veto for e-had

had-had

- single-tau trigger (80, 125, 160 GeV depending on data-taking period)
- leading tau:
 - matched to trigger
 - pT > trigger pT + 5 GeV
 - medium ID (BDT score)
- subleading tau:
 - o pT>65 GeV
 - loose ID (BDT score)

backgrounds: had-had

- Monte Carlo with data-driven jet→τ fake rates:
 - Drell-Yan Z/γ*→ττ (two real taus)
 - W→τv+jets (one real tau, one fake tau)
 - single top quark, ttbar
 - diboson
 - W→Iv+jets
 - Z→II+jets
- data-driven method:
 - QCD multijet (jet→τ fakes)

backgrounds: lep-had

- Monte Carlo:
 - ∘ Drell-Yan Z/y*→II,ττ
 - top quark, ttbar
 - diboson

(true lepton and either true tau or lepton→τ fake)

- data-driven method:
 - QCD multijet (lepton and tau faked by jets)
 - W+jets (true lepton, jet→τ fake; b-veto category)
 - ttbar (true lepton, jet→τ fake; b-tag category)

data-driven background estimation for had-had

data-driven background estimation for lep-had

- → multijet fake factors are binned in leptonic tau pT
- → W+jets/tt fake factors are binned in hadronic tau pT

systematic uncertainties

- for Monte Carlo:
 - theoretical cross-section calculation
 - luminosity, pile-up uncertainty
 - efficiency of reconstruction, identification, triggering algorithms
 - \circ energy scale and resolution of e, μ , τ , (b-)jets, MET
- for data-driven background estimates:
 - fake factors: limited size of fake regions,
 background subtraction

fit model

parameter of interest: signal strength

$$\mu = \frac{(\sigma \times BR)_{\text{observed}}}{(\sigma \times BR)_{\text{predicted}}}$$

final discriminant:

$$m_{\mathsf{T}}^{\mathsf{tot}} = \sqrt{m_{\mathsf{T}}^2(\tau_1, \tau_2) + m_{\mathsf{T}}^2(\mathsf{MET}, \tau_1) + m_{\mathsf{T}}^2(\mathsf{MET}, \tau_2)}$$

- fit function: likelihood function constructed as the product of Poisson probability terms (one for each bin in $m_{\rm T}^{\rm tot}$)
- simultaneous fit in (lep-had,had-had)x(b-veto,b-tag) $m_{\mathsf{T}}^{\mathsf{tot}}$ histograms

post-fit plots

model-independent limits

MSSM interpretations

MSSM $m_h^{\mathsf{mod}+}$ scenario

Z' interpretation

Summary and future results

- 2015+2016 data, results published in JHEP
- no new resonance found, but new limits set
- currently getting ready to publish results with full Run 2 (2015-2018) data,
 following the same analysis strategy
- next: Run 2 legacy paper with improvements

backup

Limits by channel

systematic uncertainties

gluon-gluon fusion

b-associated production

HL-LHC projection

fusion

b-associated production

HL-LHC projection

