

## Investigation of the CP properties of VBF Higgs production using the decay to a pair of tau leptons with the ATLAS detector

ATLAS-CONF-2019-050

Serhat Ördek on behalf of the ATLAS Collaboration

Georg-August-Universität Göttingen

09.01.2020 Young Scientist Session, Epiphany 2020

GEFÖRDERT VOM



Bundesministerium für Bildung und Forschung





- Baryon asymmetry observed in the universe
- Sakharov: Need CP violating processes
- But CP violation in Standard Model (SM) presumably not sufficient
- $\longrightarrow$  Probe Higgs sector for additional sources of CP violation
  - In SM: Higgs couplings are CP-even
  - This analysis: Test for CP-odd contribution to otherwise SM-like *HVV* couplings
  - Using VBF Higgs production process
  - $H \rightarrow \tau \tau$ : Good balance between S/B and available statistics



## **Effective Field Theory**



- Extend SM Lagrangian with CP-odd dimension-6 operators<sup>1</sup>
- Four new CP-odd couplings after electroweak symmetry breaking:

 $\mathcal{L}_{eff} = \mathcal{L}_{SM} + \tilde{g}_{HAA} H \tilde{A}_{\mu\nu} A^{\mu\nu} + \tilde{g}_{HAZ} H \tilde{A}_{\mu\nu} Z^{\mu\nu} + \tilde{g}_{HZZ} H \tilde{Z}_{\mu\nu} Z^{\mu\nu} + \tilde{g}_{HWW} H \tilde{W}^+_{\mu\nu} W^{-\mu\nu}$ 

• Two free parameters  $ilde{d}$  and  $ilde{d}_B$  due to SU(2) imes U(1) symmetric ansatz

$$\begin{split} \tilde{g}_{HAA} &= \frac{g}{2m_W} \left( \tilde{d} \sin^2 \theta_W + \tilde{d}_B \cos^2 \theta_W \right) \qquad \tilde{g}_{HAZ} = \frac{g}{2m_W} \sin 2\theta_W \left( \tilde{d} - \tilde{d}_B \right) \\ \tilde{g}_{HZZ} &= \frac{g}{2m_W} \left( \tilde{d} \cos^2 \theta_W + \tilde{d}_B \sin^2 \theta_W \right) \qquad \tilde{g}_{HWW} = \frac{g}{m_W} \tilde{d} \,. \end{split}$$

- Contributions from  $\widetilde{d}$  and  $\widetilde{d}_B$  indistinguishable  $\Rightarrow$  set  $\widetilde{d} = \widetilde{d}_B$
- Then  $\tilde{g}_{HAA} = \tilde{g}_{HZZ} = \frac{1}{2}\tilde{g}_{HWW} = \frac{g}{2m_W}\tilde{d}$  and  $\tilde{g}_{HAZ} = 0$

 $\Rightarrow$  Strength of CP violation described by single parameter  $\widetilde{d}$ 

<sup>&</sup>lt;sup>1</sup>V. Hankele et al: Phys. Rev. D 74 (2006).

## Matrix element & CP test



$$\begin{split} \tilde{d} \neq 0 \text{ leads to additional term in VBF matrix element} \\ \mathcal{M} &= \mathcal{M}_{SM} + \tilde{d} \mathcal{M}_{CP\text{-odd}} \\ \Rightarrow |\mathcal{M}|^2 &= \underbrace{|\mathcal{M}_{SM}|^2}_{\text{CP-even}} + 2\tilde{d} \underbrace{\Re(\mathcal{M}_{SM}^* \mathcal{M}_{CP\text{-odd}})}_{\text{CP-odd, source of CP violation}} + \tilde{d}^2 \underbrace{|\mathcal{M}_{CP\text{-odd}}|^2}_{\text{CP-even}} \end{split}$$

- Measure CP-odd Optimal Observable<sup>2</sup>:  $OO = \frac{\Re(\mathcal{M}_{SM}^* \mathcal{M}_{CP-odd})}{|\mathcal{M}_{CP}|^2}$
- CP conserved  $\Rightarrow \langle OO \rangle = 0$ (neglecting possible rescattering effects)



Calculate matrix elements with HAWK<sup>3</sup>:

- Needs 4-vectors of 2 jets and Higgs
- For signal prediction with  $\tilde{d} \neq 0$ : ME-based reweighting  $\left(w = \frac{|\mathcal{M}|^2}{|\mathcal{M}_{SM}|^2}\right)$

<sup>3</sup>A. Denner et al.; Comput. Phys. Commun. **195** (2015) 161

<sup>&</sup>lt;sup>2</sup>D. Atwood & A.Soni; Phys Lett. D45 (1992), M. Davier et al.; Phys. Lett B306 (1993), M. Diehl & O. Nachtmann; Z. Phys. C62 (1994)

## **Analysis Overview**



- Goal: Measure  $\tilde{d}$  with Optimal Observable
- $2015 + 2016 \text{ data}, \int \mathscr{L} dt = 36.1 \text{ fb}^{-1}$
- Based on H → ττ cross-section measurement, Phys. Rev. D 99, 072001



VBF selection: Di- $\tau$  events with  $\geq$  2 jets,



|                            | Exp. Signal | Background | Ratio |
|----------------------------|-------------|------------|-------|
| $\tau_{lep} \tau_{lep} SF$ | 14.4        | 1010       | 1.4%  |
| $\tau_{lep} \tau_{lep} DF$ | 26.0        | 1530       | 1.7%  |
| $	au_{lep}	au_{had}$       | 54.0        | 5350       | 1.0%  |
| $	au_{had}	au_{had}$       | 24.9        | 1510       | 1.6%  |



Phys. Rev. D 99, 072001



#### Boosted Decision Trees (BDT) to find signal within VBF selection



Define signal region (SR) via cut on BDT score:

|                            | Exp. Signal | Background | Ratio |
|----------------------------|-------------|------------|-------|
| $\tau_{lep} \tau_{lep} SF$ | 4.5         | 23         | 0.2   |
| $\tau_{lep} \tau_{lep} DF$ | 6.9         | 23         | 0.3   |
| $	au_{lep}	au_{had}$       | 16          | 19         | 0.9   |
| $	au_{had}	au_{had}$       | 12          | 26         | 0.5   |

Main backgrounds:

•  $Z \rightarrow \tau \tau$ :

Taken from simulation Normalized to data

 Misidentified τ: Estimated via data-driven techniques

## **Optimal Observable distributions**





## Fit model





- In  $\tau_{\text{lep}}\tau_{\text{lep}}$ : Fit event yields in additional  $Z \to \ell \ell$  (SF only) and Top CRs
- Scan  $\tilde{d}$  values for signal, find  $\tilde{d}$  maximizing likelihood

## **Limits on** $\tilde{d}$



#### Observed:

- Signal strength  $\mu = \frac{\sigma_{\rm Obs}}{\sigma_{\rm SM}} = 0.73$
- best-fit  $\tilde{d} = -0.01$
- 68% interval:  $\tilde{d} \in [-0.090, 0.035]$
- $\Rightarrow$  Fully consistent with SM

#### Expected with $\mu = 1$ :

Based on pseudodata using best-fit uncertainties from CR-only fit

- 68% interval:  $\tilde{d} \in [-0.035, 0.033]$
- 95% interval:  $\tilde{d} \in [-0.21, 0.15]$

Expected with  $\mu = 0.73$ : Low event yields reduce sensitivity



## Systematic uncertainties



- Fit to pseudodata generated with pre-fit uncertainties
- Set groups of uncertainties to constant in fit
- Group with biggest impact: Jet uncertainties
- Effect of ignoring τ<sub>had</sub> or MC stat. uncertainties smaller
- Other uncertainties almost negligible





- Tested CP invariance of VBF production with Optimal Observable method
- Used VBF Higgs events in di-tau final states
- Means of OO in data consistent with zero
- Expected 95% CI on CP-violation inducing parameter  $\widetilde{d}$  is [-0.21, 0.15]
- Due to low measured signal strength, no observed 95% Cl
- Observed (expected) 68% CI: [-0.090, 0.035] ([-0.035, 0.033])
- All consistent with SM expectation of zero, no sign of CP violation found

## **Additional Material**



Likelihood fit: Find configuration of your fit parameters  $\vec{\theta}$  that maximizes  $\mathcal{L}\left(\vec{\theta}|\vec{x}\right) = \prod_{\text{bins } i} \text{Poisson}\left(x_i|N_i^{\exp}(\vec{\theta})\right) \prod_{j=1}^{\#\text{NPs}} \mathcal{C}_j(\theta_j)$ given observed data  $\vec{x}$  ( $\mathcal{C}_j$ : constraint fct, usually Gaussian of width 1 around 0)

- 1. Conduct CR-only fit to data, obtain pulls  $\hat{\theta}$
- 2. Construct "Asimov" dataset  $\vec{x}_{\text{exp}}$  with NPs set to  $\hat{\theta}$
- 3. Construct new likelihood function  $\mathcal{L}'$  where center of  $\mathcal{C}_j$  is always  $\hat{\theta}_j$
- 4. Maximize  $\mathcal{L}'(\vec{\theta}|\vec{x}_{exp})$ , should return pulls  $\hat{\vec{\theta}}$  again

## **BDT and OO in Top and** $Z \rightarrow \ell \ell$ **CRs**





• Distributions in 1-bin  $Z 
ightarrow \ell \ell$  and  $t \overline{t} / W t$  CRs (not part of fit)

Serhat Ördek

## Modelling tests in CRs (2)





Optimal Observable modelling in low-BDT CR (not part of fit) Serhat Ördek

# Low-BDT CR $m_{\tau\tau}^{\text{MMC}}$ distributions







| Process           | Matrix element<br>(alternative)          | PDF set            | UEPS model<br>(alternative model)    | Prediction order<br>for total cross-section                                                         |
|-------------------|------------------------------------------|--------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------|
| VBF H             | Роwнед-Вох v2 [55–59]                    | PDF4LHC15 NLO [60] | Рутніа 8 [61]<br>(Herwig 7 [63, 64]) | approx. NNLO QCD + NLO EW [43, 44, 62]                                                              |
| ggF H             | Powheg-Box v2<br>NNLOPS [69–71]          | PDF4LHC15 NNLO     | Pythia 8                             | N <sup>3</sup> LO QCD + NLO EW [65–68]                                                              |
| VH                | Powheg-Box v2 [72]                       | PDF4LHC15 NLO      | (Herwig 7)<br>Pythia 8               | $qq/qg \rightarrow VH$ : NNLO QCD + NLO EW [73, 74]<br>$gg \rightarrow ZH$ : NLO + NLL QCD [75, 76] |
| tīH               | MG5_aMC@NLO 2.2.2 [77, 78]               | NNPDF3.0LO [79]    | Рутніа 8                             | NLO QCD + NLO EW [80-85]                                                                            |
| W/Z+jets          | Sherpa 2.2.1 [86]<br>(MG5_aMC@NLO 2.2.2) | NNPDF3.0NNLO       | Sherpa 2.2.1 [87]<br>(Pythia 8)      | NNLO [88, 89]                                                                                       |
| Electroweak W/Zjj | Sherpa 2.2.1                             | NNPDF3.0NNLO       | Sherpa 2.2.1                         | LO                                                                                                  |
| $VV/V\gamma^*$    | Sherpa 2.2.1                             | NNPDF3.0NNLO       | Sherpa 2.2.1                         | NLO                                                                                                 |
| tī                | Powheg-Box v2 [90]                       | CT10 [46]          | Pythia 6.428 [91]                    | NNLO+NNLL [92]                                                                                      |
| Wt                | Powheg-Box v1 [93]                       | CT10               | Рутніа 6.428                         | NLO [93]                                                                                            |

### **Event selection**



| Channel             | $\tau_{\rm lep} \tau_{\rm lep}  {\rm SF}$                                                                                                                                                                                                                                                                                                                                                                           | $	au_{ m lep} 	au_{ m lep}  { m DF}$                                                                                                                                                                                                                                              | $\tau_{\rm lep} \tau_{\rm had}$                                                                                                       | $	au_{ m had}	au_{ m had}$                                                                                                                                                                                    |  |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Preselection        | $\begin{array}{c} {} & {} \text{Two isolatec} \\ p_{\mathrm{T}}^{\tau_1} > 19^*/15^*  \mathrm{GeV}(\mu/e) \\ p_{\mathrm{T}}^{\tau_2} > 10/15^*  \mathrm{GeV}(\mu/e) \\ m_{\pi^{\mathrm{col}}}^{\mathrm{col}} > m_Z - \\ 30 < m_{\ell\ell} < 75  \mathrm{GeV} \\ E_{\mathrm{T}}^{\mathrm{miss},  \mathrm{hard}} > 55  \mathrm{GeV} \\ E_{\mathrm{T}}^{\mathrm{miss},  \mathrm{hard}} > 55  \mathrm{GeV} \end{array}$ | $ \begin{array}{l} \label{eq:relation} t \ r\ -lepton\ decay\ candida\\ p_{\rm T}^{\ell} > 18\ {\rm GeV}\\ p_{\rm T}^{\ell} > 14\ {\rm GeV}\\ -25\ {\rm GeV}\\ 30\ {\rm cm}_{\ell\ell} < 100\ {\rm GeV}\\ E_{\rm T}^{\rm miss} > 20\ {\rm GeV}\\ \\ N_{b\ jets} = 0 \end{array} $ | tes with opposite ele<br>$p_{T}^{\tau_{had}} > 30 \text{ GeV}$<br>$p_{T}^{\tau_{lep}} > 21^* \text{ GeV}$<br>$m_{T} < 70 \text{ GeV}$ | $\begin{array}{l} p_{\rm T}^{\rm r} > 40  {\rm GeV} \\ p_{\rm T}^{\rm r} > 30  {\rm GeV} \\ 0.8 < \Delta R_{\rm rr} < 2.5 \\  \Delta \eta_{\rm rr}  < 1.5 \\ E_{\rm m}^{\rm mis} > 20  {\rm GeV} \end{array}$ |  |
| VBF topology        | $ \begin{split} & N_{\text{jets}} \geq 2, p_{\text{f}}^{T_{2}} > 30 \text{ GeV}, m_{jj} > 300 \text{ GeV},  \Delta \eta_{jj}  > 3 \\ & p_{\text{T}}^{J_{1}} > 40 \text{ GeV} \end{split} $                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                   |                                                                                                                                       |                                                                                                                                                                                                               |  |
| BDT input variables | $ \begin{array}{c c} & m_{\tau\tau}^{\text{MMC}}, m_{jj}, \Delta R_{\tau\tau}, C_{jj}(\tau_1), C_{jj}(\tau_2), p_{T}^{\text{tr}} \\ m_{\tau\tau}^{\text{vis}}, m_{T}^{\tau_1, E_{T}^{\text{miss}}}, p_{T}^{\tau_3} \\ \Delta \phi_{\tau\tau} & E_{T}^{\text{miss}}/p_{T}^{\tau_1}, E_{T}^{\text{miss}}/p_{T}^{\tau_2} \\ \end{array} $                                                                              |                                                                                                                                                                                                                                                                                   |                                                                                                                                       | $(\phi^{ m miss})/\sqrt{2} \ p_{ m T}^{	au 	ext{r} E_{ m T}^{ m miss}},  \Delta \eta_{	au	au} $                                                                                                               |  |
| Signal region       | BDT <sub>score</sub>                                                                                                                                                                                                                                                                                                                                                                                                | > 0.78                                                                                                                                                                                                                                                                            | BDT <sub>score</sub> > 0.86                                                                                                           | $BDT_{score} > 0.87$                                                                                                                                                                                          |  |



| Process | VBFH          | $Z \to \tau \tau$ | $Z \rightarrow \ell \ell \; (	au_{lep} 	au_{lep} \; SF)$ | $t\overline{t}/Wt$ $(	au_{	ext{lep}}	au_{	ext{lep}})$ | Fake $	au_{had-vis} \left( 	au_{had} 	au_{had}  ight)$ |
|---------|---------------|-------------------|----------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|
| NF      | $0.73\pm0.47$ | $0.93\pm0.08$     | $1.0\pm0.4$                                              | $1.16\pm0.06$                                         | $0.99\pm0.09$                                          |

| Process                                                                                                                                                                                | $\tau_{\rm lep}\tau_{\rm lep}\;{\rm SF}$             | $\tau_{\rm lep}\tau_{\rm lep}{\rm DF}$                            | Process                                                         | $\tau_{\rm lep} \tau_{\rm had}$ | $\tau_{\rm had} \tau_{\rm had}$ |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------|---------------------------------|
| Data                                                                                                                                                                                   | 26                                                   | 30                                                                | Data                                                            | 30                              | 37                              |
| $ \begin{array}{l} \text{VBF}\ H \rightarrow \tau \tau / WW \ (\mu = 0.73, \ \tilde{d} = -0.01) \\ \text{VBF}\ H \rightarrow \tau \tau / WW \ (\mu = 1, \ \tilde{d} = 0) \end{array} $ | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | $\begin{array}{rrr} 5.1 & \pm  3.1 \\ 6.9 & \pm  4.4 \end{array}$ | $VBF H \rightarrow \tau \tau \ (\mu = 0.73, \tilde{d} = -0.01)$ | 11.8 ± 7.4                      | 8.9 ± 5.6                       |
| $Z \rightarrow \tau \tau$                                                                                                                                                              | 6.6 ± 3.7                                            | 8.2 ± 3.8                                                         | $VBFH \to \tau\tau\;(\mu=1,d=0)$                                | $16 \pm 10$                     | $12.3 \pm 7.7$                  |
| Fake lepton                                                                                                                                                                            | $0.02 \pm 0.20$                                      | $2.3 \pm 0.7$                                                     | $Z \rightarrow \tau \tau$                                       | $7.8 \pm 3.5$                   | $15.5 \pm 5.2$                  |
| $t\bar{t} + \text{single-top}$                                                                                                                                                         | $3.8 \pm 2.3$                                        | $10.6 \pm 5.5$                                                    | Fake lepton/ $\tau$                                             | $6.2 \pm 1.0$                   | $5.4 \pm 2.7$                   |
| $Z \rightarrow \ell \ell$<br>Dihoson                                                                                                                                                   | $11 \pm 18$<br>0.70 ± 0.59                           | $1.8 \pm 1.1$                                                     | ggF H / VH / $t\bar{t}H, H \rightarrow \tau\tau$                | $2.1 \pm 1.5$                   | $2.8 \pm 1.4$                   |
| ggF $H / VH / t\bar{t}H, H \rightarrow \tau\tau / WW$                                                                                                                                  | $0.49 \pm 0.48$                                      | $0.70\pm0.30$                                                     | Other backgrounds                                               | $2.8 \pm 3.1$                   | $2.3\pm0.8$                     |
| Sum of backgrounds                                                                                                                                                                     | 23 ± 17                                              | 23.6 ± 6.1                                                        | Sum of backgrounds                                              | $19.0 \pm 5.5$                  | $26.0\pm6.6$                    |

• Channel with highest signal purity:  $\tau_{lep}\tau_{had}$ , followed by  $\tau_{had}\tau_{had}$ 

### **Sub-channel fits**





- Using only event yields in all but one SR
- Minima of resulting curves related to high Data - Bkg regions in SR *OO* distributions

