Ultra-peripheral vector meson photoproduction in heavy-ion collisions in CMS

Marek Walczak

University of Warsaw

Epiphany Conference, Cracow, 9 Jan 2020

- 2 Exclusive $\rho(770)$ photoproduction in pPb data
- ③ Exclusive ↑ photoproduction in Run2 PbPb data

Ultra-Peripheral Collisions (UPCs)

photon flux scales as Z^2

sensitive to the gluon density squared in the hadron at low \boldsymbol{x}

Compact Muon Solenoid (CMS)

Measurement of exclusive $\rho(770)^0$ photoproduction in ultraperipheral pPb collisions at $\sqrt{s_{_{\rm NN}}} = 5.02$ TeV

arXiv:1902.01339

Eur. Phys. J. C 79 702, 2019

- Run1 pPb data at $\sqrt{s_{NN}} = 5.02$ TeV collected with the CMS detector
- Luminosity: $L = 7.4 \mu b^{-1}$ for pPb and $L = 9.6 \mu b^{-1}$ for Pbp
- Process: exclusive $ho(770)^0
 ightarrow \pi^+\pi^-$
- Photon-proton centre-of-mass energies, $W_{\gamma p}$, between 29 and 213 GeV
- $d\sigma/d|t|$ is measured in the 0.025 <|t|< 1 GeV 2 interval as a function of $W_{\gamma p}$
- Here: $|t| = p_T^2$
- The STARLIGHT Monte Carlo event generator
 - ${\scriptstyle \bullet }$ exclusive resonant and nonresonant $\pi^+\pi^-$ production
 - exclusive $\rho(1700)$ events
 - acceptance and efficiency corrections
 - photon flux

Event selection and signal extraction

arXiv:1902.01339, Submitted to EPJC

• Exactly two tracks, $|\eta_{track}| <$ 2.0, $p_T^{leading} >$ 0.4 GeV, $p_T^{subleading} >$ 0.2 GeV

- Leading HF tower < 3.0 GeV</p>
- CASTOR energy < 9.0 GeV
- ZDC⁺ energy < 500 GeV, ZDC⁻ energy < 2000 GeV

Results

arXiv:1902.01339, Submitted to EPJC

- $\sigma(\gamma p \rightarrow \rho(770)^0) = 11.0 \pm 1.4(\text{stat}) \pm 1.0(\text{syst}) \ \mu \text{b}$ • for 29 < $W_{\gamma p}$ 213 GeV
- δ = 0.24 ± 0.13(stat) ± 0.04(syst) • both CMS and HERA data
- Consistent with H1 and ZEUS Collaborations at HERA
- Ion-proton collisions can be used similarly to electron-proton

8/17

V. Goncalves, et al. Phys. Lett. B791 (2019) 299-304

- ullet First measurement of the energy dependence of the $d\sigma/dt$
- Sensitive to the onset of the gluon saturation

Exclusive Υ photoproduction in Run2 PbPb data from CMS

Done for J/ψ . Now with a new kinematic range with Υ .

Exclusive Υ photoproduction in Run2 PbPb data

- 2015 PbPb data in CMS
 - $\sqrt{s_{NN}} = 5.02 \text{ TeV}$
 - integrated luminosity recorded by CMS: 550 μb^{-1}
 - hundreds of Υ candidates
- 2018 PbPb data in CMS
 - $\sqrt{s_{NN}} = 5.02 \text{ TeV}$
 - integrated luminosity recorded by CMS: 1700 μb^{-1}
 - very good performance of the ZDC
 - $\bullet\,$ expected order of thousand of Υ candidates

Summary

- CMS is a perfect experiment for UPC studies
- Exclusive $\rho(770)^0$ photoproduction in pPb
 - Sensitive to gluon distribution in the proton at $x \sim 10^{-4} 10^{-2}$
 - Extends HERA results
 - $\bullet\,$ Cross-sections in agreemen with the power law dependence of $W_{\gamma p}$ observed at HERA
 - Upcoming measurement at 8 TeV with much larger statistics
- Exclusive Υ photoproduction in PbPb (ongoing)
 - New kinematic range
 - Improve our understanding of the initial state of relativistic nuclei

Author supported by National Science Centre (Poland), grant no. 2018/28/T/ST2/00199

- [1] CMS Collaboration, Exclusive ρ (770)⁰ photoproduction in ultra-peripheral pPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV with the CMS experiment, Eur. Phys. J. C 79 702, 2019
- [2] V.P. Gonçalves, F.S. Navarra, D. Spiering, Exclusive ρ and J/ψ photoproduction in ultraperipheral pA collisions: Predictions of the gluon saturation models for the momentum transfer distributions, Phys. Lett. B791 299-304, 2019
- [3] Kari J. Eskola Petja Paakkinen, Hannu Paukkunen, Carlos A. Salgado, EPPS16: Nuclear parton distributions with LHC data, arXiv:1612.05741, 2016
- [4] CMS Collaboration, Coherent J/ ψ photoproduction in ultra-peripheral PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV with the CMS experiment, Phys. Lett. B 772 489, 2017
- [5] CMS Collaboration, Constraining nuclear parton distributions with heavy ion collisions at the HL-LHC with the CMS experiment, CMS-PAS-FTR-18-027, 2018

Systematic uncertainties – exclusive ho in pPb collisions

$y_{\pi^+\pi^-}$ interval	(-2.0, 2.0)	(-2.0, -1.2)	(-1.2, 0.0)	(0.0, 1.2)	(1.2, 2.0)
Integrated luminosity	4.0	4.0	4.0	4.0	4.0
Track reconstruction	7.8	7.8	7.8	7.8	7.8
Unfolding	3.0	3.0	3.0	3.0	3.0
Photon flux calculation	5.0	2.0	4.0	6.0	9.0
Calorimeter exclusivity	1.4	1.4	1.4	1.4	1.4

arXiv:1902.01339, Submitted to EPJC

• Fit with the form Ae^{-bt+ct^2} for $0.025 < |t| < 0.5 \text{ GeV}^2$ • $b= 9.2 \pm 0.7$ (stat) GeV⁻² and $c = 4.6 \pm 1.6$ (stat) GeV⁻⁴

Predictions for HL LHC [5]

Constraining nuclear parton distributions with heavy ion collisions at the HL-LHC with the CMS experiment

