

Higgs decays into b-quarks...

Wojciech Bizoń

Institute for Theoretical Particle Physics - Karlsruhe Institute of Technology

Epiphany 2020, Kraków, 7.01.2020

Outline

-----> Higgs decay into b-quarks

NNLO+PS using MiNLO

-----> NNLO with massive b-quarks

----> Summary

Higgs decay to b-quarks

most common decay channel of the Higgs boson (MH=125 GeV)

- very challenging due to overwhelming QCD backgrounds
- observed by both ATLAS & CMS [1808.08238, 1808.08242]
- important for exotic searches which benefit from the large Hbb branching ratio
- arge

bb

other

 $\gamma\gamma$

NLO: solved a long time ago [Phys.Rev.D22(1980),715], ...
 NNLO with mb=0: multiple results in the literature [1110.2368], [1501.07226], [1712.06954], [1907.05836]
 NNLO with finite mb: this talk... [1805.06658] and [1911.11524]
 N3LO: first results appearing [1904.08960]

Introduction

Finding b-jets from Higgs decays

b-quarks confined inside B-hadrons

- \blacktriangleright b-jets classified as decay products of the Higgs boson based on the jet properties ($M_{bb}, \varDelta R_{bb}, \ldots$)
- sophisticated techniques developed to improve signal-to-background ratio eg. boosted region [Butterworth, Davison, Rubin, Salam, 0802.2470] and references thereto

precise theoretical description might be helpful for sharpening various tools needed for precision Higgs phenomenology

Introduction

NNLO+PS using MiNLO [WB, E.Re, G.Zanderighi, 1912.09982]

NNLO+PS: why and how?

what do we want?

<u>Goal 1:</u> transition from limited multiplicity to a realistic picture of an event with O(100) particles in a final state <u>Solution</u>: a parton shower algorithm based on knowledge of soft/collinear QCD evolution

<u>Goal 2:</u> improve accuracy of event generators <u>Solution:</u> include as much information as possible from higher-order perturbative QCD

- plan of action:
 - construct an NLO-accurate Hbbg event generator in POWHEG (NLO description of exclusive bb+1jet observables)
 - upgrade the Hbbg event generator with MiNLO

 (improve accuracy of the Sudakov form factor responsible for damping soft/collinear emissions, as a result all bb+0jet and bb+1jet observables are described with NLO accuracy)
 - 3. perform reweighting of events such that bb+0jet observables are NNLO accurate

MiNLO: building a generator

▶ for simplicity we work in the Higgs rest frame

> the main POWHEG function that is being integrated is the B-bar function which contains all necessary ingredients

$$\bar{B}(\Phi_{bbg}) = \alpha_s(q_t^2)\Delta^2(y_3) \left[B_{H \to bbg} \cdot \left(1 - 2\Delta^{(1)}(y_3) \right) + V_{H \to bbg} + \int d\Phi_r R_{H \to bbg} \right]$$

Sudakov Form Factor

MiNLO:

P Sudakov FF needs to contain terms A1, A2, B1, B2

 $\ensuremath{^{\mbox{\tiny CP}}}$ strong coupling should be evaluated at scale q_t

▶ y₃ = three-jet resolution parameter

🖙 separates between two- and three-jet configurations within a clustering algorithm

we use C/A algorithm for simplicity:

$$v_{ij} = 2(1 - \cos \theta_{ij})$$
 $y_{ij} = v_{ij} \cdot \frac{\min(E_i, E_j)^2}{M_H^2}$

 $\ensuremath{^{\mbox{\tiny CP}}}$ configurations with small y_3 parameter are suppressed by vanishing Sudakov FF

INNLL resummation performed in [Banfi, McAslan, Monni, Zanderighi, 1607.03111]

MiNLO: verification

- ► Hbbg_MiNLO generator constructed within POWHEG framework, upgraded with MiNLO
- Higgs decay → no partons in initial state → no PDFs required → we can perform small-α_s limit to verify an NLO accuracy of the Hbbg_MiNLO generator
- we consider the Hbb decay width and compare it with the analytical result

$$\delta(\alpha_s) \equiv \frac{1}{\alpha_s^2} \cdot \frac{\Gamma_{H \to b\bar{b}}^{\text{minlo}} - \Gamma_{H \to b\bar{b}}^{\text{NLO}}}{\Gamma_{H \to b\bar{b}}^{\text{LO}}}$$

- if the Hbbg_MiNLO generator yields a correct NLO decay width, the difference should approach a constant in the small-α_s limit
- challenge: for small values of α_s the Sudakov peak moves to lower and lower y₃ values (calculation in quadruple precision required)
- ► all three curves approach constant value in the $\alpha_s \rightarrow 0$ limit ce the difference between MiNLO and NLO results is at most O(α_s^2)

MiNLO: verification

 challenge: for small values of α_s the Sudakov peak moves to lower and lower y₃ values (calculation in quadruple precision required)

► all three curves approach constant value in the $\alpha_s \rightarrow 0$ limit ce the difference between MiNLO and NLO results is at most O(α_s^2)

NNLO+PS: reweighting

the Hbbg_MiNLO results can be further improved to reproduce the exact NNLO decay width this can be achieved by reweighting the Hbbg_MiNLO events by a factor

$$\mathcal{W} = \frac{\Gamma_{H \to b\bar{b}}^{\text{NNLO}}}{\Gamma_{H \to b\bar{b}}^{\text{Minlo}}}$$

> the resulting events can be easily interfaced with any Higgs production mode

the amalgamated events can be showered with a kt-ordered parton shower there are two veto scales (scalup_prod and scalup_dec)

veto is separately applied to production and decay evolution

NNLO+PS: example

- example: decay events interfaced with associated Higgs production $\square pp \rightarrow HZ \rightarrow (bb)(e+e-) @13TeV$
- results compared to the ones presented in [Astill,WB,Re,Zanderighi, 1804.08141]
 production described at NNLO
 - decay described at NLO(red) / NNLO(black)
- parton shower interface:
 - PS1: whole production/decay event generated by POWHEG,
 - single veto scale for production/decay
 - PS2: production/decay separately generated,

two veto scales (scalup_prod and scalup_dec)

- better scale uncertainty estimation by NNLO decay events (left of the Higgs boson peak)
- changes around the peak: related to b-quark mass
 NLO-decay: massive b-quarks
 - NNLO-decay: massless b-quarks

NNLO+PS: example

- example: decay events interfaced with associated Higgs production $\square pp \rightarrow HZ \rightarrow (bb)(e+e-) @13TeV$
- results compared to the ones presented in [Astill,WB,Re,Zanderighi, 1804.08141]
 production described at NNLO
 - decay described at NLO(red) / NNLO(black)
- parton shower interface:
 - PS1: whole production/decay event generated by POWHEG,
 - single veto scale for production/decay
 - PS2: production/decay separately generated,

two veto scales (scalup_prod and scalup_dec)

- better scale uncertainty estimation by NNLO decay events (left of the Higgs boson peak)
- changes around the peak: related to b-quark mass
 NLO-decay: massive b-quarks
 - NNLO-decay: massless b-quarks

NNLO+PS using MiNLO

☞ h_bbg process available in POWHEG-BOX-V2

© 60M ready to use decay events available at <u>https://cernbox.cern.ch/index.php/s/v1qxYyICeL66InO</u>

NNLO with massive b-quarks [A.Behring, WB, 1911.11524]

Overview

need of high-precision Standard Model predictions requires consideration of many effects: masses of b-quarks [Bernreuther, Chen, Si, 1805.06658] and [Behring, WB, 1911.11524]

- structure of an NNLO calculation:

 double-virtual corrections (VV): two-loop H→bb amplitudes, explicit 1/€ poles
 Teal-virtual corrections (RV): one-loop H→bbg amplitudes, explicit 1/€ poles, divergences in soft limit
 double-real corrections (RR): tree-level H→bb{gg,qq} amplitudes, divergences in soft/collinear limits
- soft/collinear divergences regulated using nested soft-collinear subtraction scheme
- additionally:
 - ☞ four b-quarks contribution: tree-level H→bbbb, UV&IR finite
 - $representation the two-loop H arrow bb(y_t)$ and one-loop H arrow bbg(y_t), UV&IR finite

approx. tot. dec: [Chetyrkin,Kwiatkowski, hep-ph/9505358] & [Larin,Ritbergen,Vermaseren, hep-ph/9506465] exact & differential: [Primo,Sasso,Somogyi,Tramontano, 1812.07811]

Soft/collinear divergences

singularities of QCD amplitudes in soft/collinear limits are generic and independent of a hard process

soft/collinear divergences in **RR** and **RV** contributions:

☞ RV, single-soft: H→bb(g)

Image: RR, single-soft: H→bbg(g)

Image: RR, single-coll: H→bb[gg]

☞ RR, double-soft: H→bb(gg) & H→bb(qq)

nested soft-collinear subtractions

The real-virtual case $H(q_1) \rightarrow b(q_2) + b(q_3) + g(q_4)$ @one-loop is regulated then as $2 \operatorname{Re} \langle \mathcal{M}_{bbg}^{(0)} | \mathcal{M}_{bbg}^{(1)} \rangle \mathrm{d}\Phi_{bbg} = \left[(I - S_4) + S_4 \right] 2 \operatorname{Re} \langle \mathcal{M}_{bbg}^{(0)} | \mathcal{M}_{bbg}^{(1)} \rangle \mathrm{d}\Phi_{bbg}$

 $response to the double-real case H(q_1) \rightarrow b(q_2) + b(q_3) + g(q_4) + g(q_5)$ is regulated then as

with $F_{LM}(bbX) = \mathrm{d}\Phi_{bbX} |\mathcal{M}_{bbX}^{\mathrm{tree}}|^2 \mathcal{F}_{\mathrm{obs}}(bbX)$

the $[dg_i]$ being the usual real-emission phase-space and **S**,**C** denoting the soft/collinear operators

▶ single- and double-unresolved terms feature 1/€ poles that appear after integration over the unresolved phase space [∞] next slide

Integrated subtraction terms: RR

RR, single-unresolved subtraction terms:

© computed long time ago as part of the FKS subtraction scheme at NLO

compendium of formulae: [Alioli, Nason, Oleari, Re, 1002.2581]

RR, double-unresolved subtraction terms:

 [®] factorisation formula

$$S_{45}|\mathcal{M}_{bbgg}^{\text{tree}}|^2 = g_s^4 \operatorname{DSoft}_{gg}^{(0)}(q_2, q_3; q_4, q_5) |\mathcal{M}_{bb}^{\text{tree}}|^2$$

split phase space into energy ordered configurations: $1 == \Theta(E_4 - E_5) + \Theta(E_5 - E_4)$ in the double-soft limit momenta q_2 and q_3 are in back-to-back configuration the integrated double-soft subtraction term is (integrated numerically)

$$DSoft_{gg,int}^{(0)}(q_2, q_3) = \int [dg_4] [dg_5] DSoft_{gg}^{(0)}(q_2, q_3; q_4, q_5)$$
$$= \frac{1}{(4\pi)^2} \left(\frac{\mu_R}{E_{max}}\right)^{4\epsilon} \left[\frac{C_{gg}^{(-3)}}{\epsilon^3} + \frac{C_{gg}^{(-2)}}{\epsilon^2} + \frac{C_{gg}^{(-1)}}{\epsilon} + C_{gg}^{(0)}\right]$$

with $E_{max} = (M_{H}^2 - 4m_b^2)/2$

Integrated subtraction terms: RV

• in the soft limit momenta q_2 and q_3 are in back-to-back configuration

 \square angular integral ($d(cos\theta)$):

- ✔ (a) numerically very simple
- ✓ (b) performed also analytically, result in terms of HPLs [using Mathematica, HarmonicSums]

Pole cancellation

- \triangleright integrated subtraction terms allow to trade soft/collinear divergences for 1/ ϵ poles
- since singularities of QCD amplitudes in soft/collinear limits are generic and independent of a hard process, pole cancellation can be demonstrated without referring to exact form of matrix elements
- single-unresolved configuration (RR + RV)

$$d\Gamma_{\rm RR}^{\rm SU}(bbgg + bbqq) + d\Gamma_{\rm RV}^{\rm SU}(bbg) = \left[\frac{\#}{\epsilon^2} + \frac{\#}{\epsilon} + \cdots\right] (I - S_4) F_{LM}(bbg) + \frac{1}{2} F_{\rm LM}(bbg) + \frac{1}{2} F_{\rm LM}$$

- cancellation shown analytically
- fully-unresolved configuration (RR + RV + VV) (a) part proportional to one-loop H→bb matrix element

$$d\Gamma_{\rm RV}^{\rm FR}(bbg) + d\Gamma_{\rm VV}^{\rm FR}(bb) = \left[\frac{\#}{\epsilon} + \cdots\right] F_{LV}^{\rm fin}(bb) = d\Phi_{\rm V} 2\text{Re}(\mathcal{M}_{\rm c}^{(0)}|\mathcal{M}_{\rm c}^{(1)}\rangle \mathcal{F}_{\rm V}(bb)$$

 $F_{LV}^{\text{fin}}(bb) = \mathrm{d}\Phi_{bb} \, 2\mathrm{Re} \langle \mathcal{M}_{bb}^{(0)} | \mathcal{M}_{bb}^{(1)} \rangle \, \mathcal{F}_{\mathrm{obs}}(bb)$

(b) part proportional to tree-level H→bb matrix element

$$d\Gamma_{RR+RV+VV}^{DU} = \left[\frac{\#}{\epsilon^3} + \frac{\#}{\epsilon^2} + \frac{\#}{\epsilon} + \cdots\right] F_{LM}(bb)$$

cancellation shown numerically (since integrated double-soft function computed only numerically)

Results: verification

 approximate analytical result in heavy-scalar decay into quark-antiquark pair [Harlander, Steinhauser, hep-ph/9704436]

expand the NNLO width as

$$\Gamma_{H \to b\bar{b}}^{\text{NNLO}} = \Gamma_{H \to b\bar{b}}^{\text{LO}} \cdot \left[1 + \left(\frac{\alpha_s}{\pi}\right) \gamma_1 + \left(\frac{\alpha_s}{\pi}\right)^2 \gamma_2 \right]$$

with further breakdown into colour structures

$$\gamma_1 = C_F \cdot \gamma_1^{C_F} \gamma_2 = C_F^2 \cdot \gamma_2^{C_F^2} + C_F C_A \cdot \gamma_2^{C_F C_A} + C_F T_F n_l \cdot \gamma_2^{C_F T_F n_l} + C_F T_F \cdot \gamma_2^{C_F T_F}$$

compare our result to analytical prediction (MH=125.09 GeV, mb=4.78 GeV)

	$\gamma_1^{C_F}$	$\gamma_2^{C_F^2}$	$\gamma_2^{C_F C_A}$	$\gamma_2^{C_F T_F n_l}$	$\gamma_2^{C_F T_F}$
HS '97	-7.446648	+19.4192	-53.5558	+18.6286	+14.7946 +14.7945(1)
Our result	-7.446648(7)	+19.4199(10)	-53.5557(20)	+18.6283(2)	

very good agreement down to a few digits (thanks to mb/MH << 1)</p>

Summary

- ► H→bb decay process is an important channel that is already being explored at the LHC, measurements during the HL-LHC programme will offer many more H→bb events
- full exploitation of such data will benefit from better theoretical understanding
- NNLO QCD calculation of the H→bb decay successfully combined with parton shower (massless b-quarks)
 repository of processes (h_bbg process)
- > calculation of b-quark mass effects at NNLO QCD completed within the nested soft-collinear subtraction scheme
- good position to perform thorough phenomenological studies...

Summary

- ► H→bb decay process is an important channel that is already being explored at the LHC, measurements during the HL-LHC programme will offer many more H→bb events
- full exploitation of such data will benefit from better theoretical understanding
- NNLO QCD calculation of the H→bb decay successfully combined with parton shower (massless b-quarks)
 Image tool available in the POWHEG repository of processes (h_bbg process)
- > calculation of b-quark mass effects at NNLO QCD completed within the nested soft-collinear subtraction scheme
- ▶ good position to perform thorough phenomenological studies...

NNLO+PS: Mbb

 \blacktriangleright invariant mass of the b-jets (M_{bb})

NNLO/NLO K-factor agrees with fixed-order predictions

[Caola,Luisoni,Melnikov,Rontsch, 1712.06954]

[A.Behring, WB, 1911.11524]

NNLO: Pole cancellation (1)

single-unresolved

$$2M_{H} \langle d\Gamma_{\rm RV}^{\rm FR}(b\bar{b}g) \rangle = \frac{1}{\epsilon} \left[\left(\frac{\alpha_{s}}{4\pi} \right) 4C_{F} \left[1 + \frac{1+\beta^{2}}{2\beta} \log \left(\frac{1-\beta}{1+\beta} \right) \right] \langle F_{LV}^{\rm fin}(b\bar{b}) \rangle \right] + \mathcal{O}\left(\epsilon^{0}\right) , \tag{4.22}$$

$$(4.22)$$
and the explicit expansion of the double-virtual contribution, Eq. (4.20), yields
$$2M_{H} \langle d\Gamma_{\rm VV}^{\rm FR}(b\bar{b}) \rangle = -\frac{1}{\epsilon} \left[\left(\frac{\alpha_{s}}{4\pi} \right) 4C_{F} \left[1 + \frac{1+\beta^{2}}{2\beta} \log \left(\frac{1-\beta}{1+\beta} \right) \right] \langle F_{LV}^{\rm fin}(b\bar{b}) \rangle \right] , \qquad (4.23)$$

▶ fully-unresolved (proportional to one-loop H→bb matrix element)

$$2M_{H} \left\langle \mathrm{d}\Gamma_{\mathrm{RR}}^{\mathrm{SU}}(b\bar{b}gg + b\bar{b}q\bar{q}) \right\rangle$$

$$= \left\langle \left(\frac{\alpha_{s}}{4\pi}\right) \left[\frac{2C_{A}}{\epsilon^{2}} + \frac{1}{\epsilon} \left[4C_{F} + \beta_{0}(n_{l}) + \frac{C_{A} - 2C_{F}}{v_{23}} \log\left(\frac{1 + v_{23}}{1 - v_{23}}\right) + 2C_{A} \log\left(\frac{m_{b}\mu_{R}}{2(q_{2} \cdot q_{4})}\right) + 2C_{A} \log\left(\frac{m_{b}\mu_{R}}{2(q_{3} \cdot q_{4})}\right) \right] \right] (I - S_{4})F_{LM}(b\bar{b}g) \right\rangle + \mathcal{O}\left(\epsilon^{0}\right) .$$

$$(4.24)$$

A similar expansion holds for the real-virtual single-unresolved contribution, Eq. (4.14),

$$2M_{H} \langle d\Gamma_{\rm RV}^{\rm SU}(b\bar{b}g) \rangle = \left\langle \left(\frac{\alpha_{s}}{4\pi}\right) \left[-\frac{2C_{A}}{\epsilon^{2}} - \frac{1}{\epsilon} \left[4C_{F} + \beta_{0}(n_{l}) + \frac{C_{A} - 2C_{F}}{v_{23}} \log\left(\frac{1 + v_{23}}{1 - v_{23}}\right) + 2C_{A} \log\left(\frac{m_{b}\mu_{R}}{2(q_{2} \cdot q_{4})}\right) + 2C_{A} \log\left(\frac{m_{b}\mu_{R}}{2(q_{3} \cdot q_{4})}\right) \right] \right] (I - S_{4})F_{LM}(b\bar{b}g) \right\rangle.$$
(4.25)

[A.Behring, WB, 1911.11524]

NNLO: Pole cancellation (2)

fully-unresolved (proportional to one-loop H→bb matrix element)
 cancellation of at least 7-digits

_	$\mathcal{C}^{\mathrm{DU},(-3)}_{C_FC_A}$	$\mathcal{C}^{\mathrm{DU},(-2)}_{C_FC_A}$	$\mathcal{C}^{\mathrm{DU},(-2)}_{C^2_F}$	$\mathcal{C}^{\mathrm{DU},(-2)}_{C_FT_Fn_l}$	$\mathcal{C}^{\mathrm{DU},(-1)}_{C_FC_A}$	$\mathcal{C}^{\mathrm{DU},(-1)}_{C^2_F}$	$\mathcal{C}^{\mathrm{DU},(-1)}_{C_FT_Fn_l}$	$\mathcal{C}^{\mathrm{DU},(-1)}_{C_FT_F}$
RR	-22.11	-279.75	+244.32	+14.74	-1777.55	+2672.58	+185.77	0
RV	+22.11	+320.28	-488.64	-29.47	+1732.44	-2672.58	-161.20	+257.20
VV	0	-40.53	+244.32	+14.74	+45.11	0	-24.56	-257.20
Sum	10^{-13}	10^{-10}	10^{-8}	10^{-11}	10^{-6}	10^{-6}	10^{-5}	0
Rel. canc.	10^{-14}	10^{-13}	10^{-11}	10^{-13}	10^{-10}	10^{-9}	10^{-7}	0

Table 1: Numerical values of the pole coefficients of the double-unresolved term as defined in Eq. (4.27). The numerical values correspond to $m_b = 4.78$ GeV, $M_H = 125.09$ GeV and the renormalisation scale is $\mu_R = 3M_H$. Each column corresponds to a particular colour structure of a given ϵ pole. The three rows correspond to the double-real, real-virtual, and double-virtual contributions. In the last two rows, we report the absolute and relative level of cancellation after adding up RR + RV + VV contributions. The last row is normalised to the largest value of each column.

NNLO: Results

▶ Expansion coefficients and H→bb decay width in the MS-bar scheme

μ_R	$\frac{1}{2}M_H$	M_H	$2M_H$
$\bar{\gamma}_1^{b\bar{b}}$ (our res.)	+3.023597(10)	+5.796203(15)	+8.568783(11)
$\overline{\gamma}_1^{b\overline{b}}$ (Ref. [20])	+3.024	+5.798	+8.569
$\overline{\gamma}_{1}^{b\overline{b}}$ (Ref. [71], $m_{b} = 0$)	+2.8941	+5.6667	+8.4393
$\overline{\gamma}_2^{bar{b}} ext{ (our res., w/o } y_b y_t)$	-3.2466(31)	+30.4376(33)	+79.1755(38)
$\overline{\gamma}_2^{b\overline{b}} ext{ (our res., with } y_b y_t)$	+3.7123(31)	+37.3965(33)	+86.1345(38)
$\overline{\gamma}_2^{b\overline{b}}$ (Ref. [20], with $y_b y_t$)	+3.685	+37.371	+86.112
$\overline{\gamma}_{2}^{b\overline{b}}$ (Ref. [71], $m_{b} = 0$)	-3.8368	+29.1467	+77.1844
$\overline{\Gamma}_{ m LO}^{bar{b}}$ [MeV]	+2.17005	+1.92702	+1.73274
$\overline{\Gamma}^{bar{b}}_{ m NLO} [{ m MeV}]$	+2.43161	+2.32781	+2.21731
$ar{\Gamma}^{bar{b}}_{\mathrm{NNLO}} \mathrm{[MeV]} (\mathrm{w/o} y_b y_t)$	+2.42041(1)	+2.40333(1)	+2.36344(1)
$\overline{\Gamma}^{bb}_{\text{NNLO}}$ [MeV] (with $y_b y_t$)	+2.44441(1)	+2.42059(1)	+2.37628(1)

Table 3: The results for the LO, NLO and NNLO total decay width. The total width is calculated using our results for the expansion coefficients, $\overline{\gamma}_1^{b\overline{b}}$ and $\overline{\gamma}_2^{b\overline{b}}$. For comparison we include corresponding results from Ref. [20]. We also provide results in the limit of massless *b*-quarks from Ref. [71], which do not contain the $y_b y_t$ contribution. The uncertainties quoted for our results correspond to errors from numerical integration.