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Outline

1. General discussion of the decay law: non-exp. decays, QZE and IZE
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3. The neutron decay anomaly

4. The Inverse-Zeno-effect as an explanation of the anomaly
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Part 1: General Part 1: General discussiondiscussion
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Exponential decay law

• : Number of unstable particles at the time t = 0.

lifetimemean  1/    ,  )(
0

Γ== Γ− τteNtN

• For a single unstable particle:

Confirmend in countless cases! 

tetp Γ−=)(

...1)( +Γ−= ttp

is the survival probability for a single unstable particle created at  t=0.

(Intrinsic probabilty, see Schrödinger´s cat).

0N

For small times: 
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Basic definitions
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no exp. decay for short times. 
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Deviations from the exp. law at short times

Taylor expansion of the amplitude:

Note: the quadratic behavior holds 

for any quantum transition, not only for decays. 

It is an absolutely general property.
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Time evolution and energy distribution (1)

S

S

 The unstable state S  is not an eigenstate of the Hamiltonian H.

Let d (E) be the energy distribution of the unstable state S .  

Normalization holds:  d (E)dE 1
+∞

−∞
=∫

iEt

Sa(t) d (E)e dE
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The Breit-Wigner energy distribution cannot be exact. 

Two physical conditions for a realistic are:

1) Minimal energy:

2) Mean energy finite:
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Time evoluition and energy distribution (2)

Breit-Wigner distribution:

.)()(
4/)(

1

2
)(

2/

22
0 tttiM

S etpeta
ME

Ed Γ−Γ−− =→=→
Γ+−

Γ
=

π



Francesco Giacosa

A very simple numerical example
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The quantum Zeno effect

For large but finite N :

2
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We perform  N inst. measurements: 

the first one at time t t , the second at time t 2t , ..., the N-th at time T Nt .
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 slowing down of the decay.→
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General description of the Zeno

and anti-Zeno effects
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Zeno effect

Anti-Zeno-Effekt

Survival probabilty after a single measurement at time T 

Survival probability after N measurments:

NFor 0,  ( 0) 0,   p( ) 1τ→ γ τ→ → τ →

See: P. Facchi, H. Nakazato, and S. Pascazio, Phys. Rev. Lett. 86, 2699 (2001).
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Part 2: Experimental Part 2: Experimental evidenceevidence of of nonnon--

exponentialexponential decaydecay
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Cold Na atoms in a optical potential

Experimental confirmation of 

non-exponential decays (1)
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Experimental confirmation of 

non-exponential decays (2)

Measured survival probabilty p(t)

Non-exp decay!
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Experimental confirmation of 

non-exponential decays and Zeno /Anti-Zeno effects

Same exp. setup, 

but with measurements in between

Zeno effekt Anti-Zeno effect
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Late-time deviations

Confirmation of: L. A. Khalfin. 1957. 1957 (Engl. trans. Zh.Eksp.Teor.Fiz.,33,1371)
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Considerations

• No other short- or long-time deviation from the exp. law 

was seen in unstable states.

• Verification of the two aforementioned works (Reizen + 

Rothe) would be needed.

• The measurement of deviations in simple natural 

systems (elementary particles, nuclei, atoms) would be a 

great achievement. 
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Part 3: Part 3: neutron decay anomalyneutron decay anomaly
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Neutron decay: exp. methods

• There are two methods to measure the lifetime of 

neutrons: beam and trap

• Beam: one measures the protons out of a neutron beam

• Trap: one measures the neutrons that survive in a 

certain neutron trap
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Beam method
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Beam (or bottle) method
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Exp. results: beam vs trap/bottle
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Hidden decay(s) of the neutron?

the proposal of Fornal and Grinstein

The beam experiments shows a larger lifetime because it misses of a BSM 

decays of the neutron. In particular, decays into a light fermion.

However, the existence of such a light fermion is at odds with bounds from 

neutron stars, see: 
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Standard model calculation (and exp.) on gA

A. Czarnecki, W. J. Marciano and A.Sirlin,

Radiative Corrections to Neutron and Nuclear Beta Decays Revisited,

Phys. Rev. D 100 (2019) no.7, 073008 [arXiv:1907.06737 [hep-ph]]. 
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Additional references

A. Czarnecki, W. J. Marciano and A. Sirlin,

Neutron Lifetime and Axial Coupling Connection,

Phys. Rev. Lett. 120 (2018) no.20, 202002 [arXiv:1802.01804 [hep-ph]]. 

D. Dubbers, H. Saul, B. Märkisch, T. Soldner and H.~Abele, 

Exotic decay channels are not the cause of the neutron lifetime anomaly,

Phys. Lett. B 791 (2019) 6 [arXiv:1812.00626 [nucl-ex]]. 

B. Märkisch et al.,

Measurement of the Weak Axial-Vector Coupling Constant in the Decay of 

Free Neutrons Using a Pulsed Cold Neutron Beam,

Phys. Rev. Lett. 122 (2019) no.24, 24250 [arXiv:1812.04666 [nucl-ex]].
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Part Part 4:4: IZE and neutron decayIZE and neutron decay
1906.10024 
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IZE as a possible explanation of the

neutron decay anomaly
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Environment and effective decay width

Γ(ω) is the decay width,  f(τ,ω) the response of the environment
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Two explicit forms of the response function f(τ,ω)

This is for ideal collapses at τ, 2τ, 3τ, ….

This is for a continuous measurement

As shown in F.G., Modelling the inverse Zeno effect for the neutron decay,''

APB 51 (2020) 77 [arXiv:1909.01099 [hep-ph]], the differences are negligible. 
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The case of the neutron

Note: for very large ω the decay width function should go to zero
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The basic idea

Integral over Γ(ω) and f(τ,ω)

Γ(ω)

f(τ,ω)
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Introducing an upper ‘energy’ for convergence

ωC measures the maximal off-shellness of the neutron; 

It should be of the order of 1-10 MeV.
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Discussion

• Beam: how often is the decay determined? Not that 

often, τ=10^-9 s.

• Traps: Here, we have typically a set of 10^8 cold 

neutrons entangled in a Slater determinant. Measuring 

one means to collapse them all. τ=10^-17 s.
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IZE: Beam vs Trap 

See 1906.10024 for details 

For the beam: exponential on-shell result

For the trap: possible increase of Γ (IZE)

s

s
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ωC vs τ

1906.10024 
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Discussions

• Assume that the beam experiments are ‘wrong’,

• Then, hard answer: our explanation can be thrown 

away…

• Yet: even in this case, our work shows that trap 

experiment are not far from the IZE! So, even if we are 

not there yet, we could use trap experiments to test the 

IZE.

• Question of the referee: Can one Zeno the beam exp? 

No, it does not work!
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Conclusions

• QZE and IZE are a well-established part of QM

• The IZE has been presented as a possible solution of 

the neutron decay anomaly

• Increasing/decreasing of nr of neutrons in the trap may 

have an influence on the measured values.

• Measuring the protons in trap exps should confirm the 

smaller decay width (no influence)
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Thank You
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|S> is the initial unstable state, coupled to an infinity of final states |k>. 

(Poincare-time is infinite. Irreversible decay). General approach, similar

Hamiltonians used in many areas of Physics. 

(Ex: Jaynes-Cummings approach)

Example/1: spontaneous emission. |S> represents an atom in the 

excited state, |k> is the ground-state plus photon.

Example/2: pion decay. |S> represents a neutral pion, |k> represents 

two photons (flying back-to-back)

Lee Hamiltonian
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Exponential limit
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The exponential limit is obtained when the unstable state couples to all

the states of the continuum with the same strength 
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Non-exponential case (1)
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This is what I have said at the beginning of the talk, but now “well done”
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Non-exponential case (2)
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Two-channel case (a)
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Two-channel case (2)

1h (t)dt  probabilty that the state S  decays in the first channel between (t,t+dt)=

2h (t)dt  probabilty that the state S  decays in the second channel between (t,t+dt)=

1,BW 1

2,BW 2

h (t)
Dashed: const

h (t)

Γ
= =
Γ

1

2

h (t)

h (t)

t
2 4 6 8 10

1.8

2.0
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2.8

Measurable effect???
Details in:

F. G.,  Non-exponential decay in quantum field theory and in quantum mechanics: the case of two (or more) decay channels,

Found. Phys. 42 (2012) 1262 [arXiv:1110.5923].

Two-channel case (b) 
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Experimental confirmation of the

quantum Zeno effect - Itano et al (1)

2 2
2

At t 0,  the electron is in 1 .

t t
p(t) cos 1 ...

2 4
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(Undisturbed) survival probability

Ω== /Tfür  0 πp(T)
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5000 Ions in a Penning trap

Short laser pulses 1-3 work as measurements.

( )
2 2

2 t
p(t) cos t / 2 1 ... ;     p(T) 0 für T /

4

(Transition probability (without measuring) at time  T) :      1 p(T)  1 .

Witn  n measurements in between the transition probabilty decreases!

The electr

Ω
= Ω = − + = = π Ω

− =

on stays in state 1.

Experimental confirmation of the

quantum Zeno effect - Itano et al (2)
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Other experiments about Zeno/Streed et al

Use of BEC (with Rb). QZE confirmed.

The intensity of a continuous observation of a quantum state is equivalent 

to a certain t0 (Shulman, PRA 57, 1509 (1997) ).
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Other experiments about Zeno/Haroche

Cavity QED: the nr of photons is frozen. 

Another verification of QZE. 

Direction QFT.
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Other experiments about Zeno/Balzer

Same setup as Itano et al.(different ions are used, YB instead of Be),

But now the measurement takes place between 3 and 2. 

Results in agreement with Itano, but here the QZE is associated by a seires

of null-measurements.
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Quantum Zeno dynamics, Quantum 

computations, ...


