Learning from the Lund plane

Epiphany 2020, Krakow, 10 January 2020

Frédéric Dreyer

with Stefano Carrazza, Gavin Salam & Gregory Soyez
Boosted objects at the LHC

- At LHC energies, EW-scale particles (W/Z/t...) are often produced with $p_t \gg m$, leading to collimated decays.
- Hadronic decay products are thus often reconstructed into single jets.

$$p_t \lesssim m$$

2 jets

[Figure by G. Soyez]
Boosted objects at the LHC

- At LHC energies, EW-scale particles (W/Z/t...) are often produced with $p_t \gg m$, leading to collimated decays.
- Hadronic decay products are thus often reconstructed into single jets.

\[p_t \lesssim m \quad \text{2 jets} \]

\[p_t \gg m \quad \text{1 jet} \]

[Figure by G. Soyez]
Boosted objects at the LHC

- Many techniques developed to identify hard structure of a jet based on radiation patterns.
- In principle, simplest way to identify these boosted objects is by looking at the mass of the jet.
Boosted objects at the LHC

- Many techniques developed to identify hard structure of a jet based on radiation patterns.
- In principle, simplest way to identify these boosted objects is by looking at the mass of the jet.
- But jet mass distribution is highly distorted by QCD radiation and pileup.
Two main approaches to study boosted decays:

1. Manually constructing substructure observables that help distinguish between different origins of jets.

2. Apply machine learning models trained on large input images or observable basis.

Aim of this talk: new approaches bridging some of the gap between these two techniques.
Jet grooming: (Recursive) Soft Drop / mMDT

- Mass peak can be partly reconstructed by removing unassociated soft wide-angle radiation (grooming).

- Recurse through clustering tree and remove soft branch if

\[
\frac{\min(p_{t,1}, p_{t,2})}{p_{t,1} + p_{t,2}} < z_{\text{cut}} \left(\frac{\Delta R_{12}}{R_0} \right)^\beta
\]

pp->WW, 13 TeV, Pythia 8 (4C)
R=1, $p_{t,j} > 500$ GeV, $|y_j|<5$

Ref. [Dasgupta, Fregoso, Marzani, Salam JHEP 1309 (2013) 029]
[Larkoski, Marzani, Soyez, Thaler JHEP 1405 (2014) 146]
Jet grooming: (Recursive) Soft Drop / mMDT

- Mass peak can be partly reconstructed by removing unassociated soft wide-angle radiation (grooming).

- Recurse through clustering tree and remove soft branch if

\[
\min\left(\frac{p_{t,1}}{p_{t,1} + p_{t,2}}\right) < z_{\text{cut}} \left(\frac{\Delta R_{12}}{R_0}\right)^\beta
\]

Hard partons
Hadrons with UE
Recursive Soft Drop

pp->WW, 13 TeV, Pythia 8 (4C)
R=1, \(p_{t,j} > 500\ \text{GeV}, \ |y_j| < 5\)
RSD: \(N=\infty, \ z_{\text{cut}}=0.05, \ \beta=1\)

[Dasgupta, Fregoso, Marzani, Salam JHEP 1309 (2013) 029]
[Larkoski, Marzani, Soyez, Thaler JHEP 1405 (2014) 146]
Variety of observables have been constructed to probe the hard substructure of a jet ($V/H/t$ decay lead to jets with multiple hard cores).

Radiation patterns of colourless objects ($W/Z/H$) differs from quark or gluon jets.

Efficient discriminators can be obtained e.g. from ratio of N-subjettiness or energy correlation functions.

[Thaler, Van Tilburg JHEP 1103 (2011) 015]
[Larkoski, Salam, Thaler JHEP 1306 (2013) 108]
[Larkoski, Moult, Neill JHEP 1412 (2014) 009]
Applying Machine Learning in Jet Physics

Recent wave of results in applications of ML algorithms to jet physics.

Classification problems have been tackled through several orthogonal approaches

- Convolutional Neural Networks used on representation of jet as image
- Recurrent Neural Networks used on jet clustering tree.
- Linear combination or dense network applied to an observable basis (e.g. N-subjettiness ratios, energy flow polynomials)
Classification problems are one of the easiest application of ML, but by far not the only one!

Many promising applications of ML methods for:

- fast simulations using unsupervised generative models
 [Paganini, de Oliveira, Nachman PRL 120 (2018) 042003]

- regression tasks such as pile-up subtraction
 [Komiske, Metodiev, Nachman, Schwartz JHEP 1712 (2017) 051]

- anomaly detection for new physics
 [Collins, Howe, Nachman PRL 121 (2018) 241803]

- distance metric of collider events
 [Komiske, Metodiev, Thaler arXiv:1902.02346]

- etc ...

See ML4Jets conference taking place at NYU next week!
THE LUND PLANE
Lund diagrams in the \((\ln z \theta, \ln \theta)\) plane are a very useful way of representing emissions. Different kinematic regimes are clearly separated, used to illustrate branching phase space in parton shower Monte Carlo simulations and in perturbative QCD resummations. Soft-collinear emissions are emitted uniformly in the Lund plane\[
 dw^2 \propto \alpha_s \frac{dz}{z} \frac{d\theta}{\theta}
\]
Features such as mass, angle and momentum can easily be read from a Lund diagram.

jet mass \equiv \frac{m^2}{p_t^2 R^2} \approx z_1 \theta_1^2
Lund diagrams for substructure

Substructure algorithms can often also be interpreted as cuts in the Lund plane.

[Dasgupta, Fregoso, Marzani, Salam JHEP 1309 (2013) 029]
Lund diagrams can provide a useful approach to study a range of jet-related questions

▶ First-principle calculations of Lund-plane variables.
▶ Constrain MC generators, in the perturbative and non-perturbative regions.
▶ Brings many soft-drop related observables into a single framework.
▶ Impact of medium interactions in heavy-ion collisions.
▶ Boosted object tagging using Machine Learning methods.

We will use this representation as a novel way to characterise radiation patterns in a jet, and study the application of recent ML tools to this picture.
To create a Lund plane representation of a jet, recluster a jet j with the Cambridge/Aachen algorithm then decluster the jet following the hardest branch.

1. Undo the last clustering step, defining two subjets j_1, j_2 ordered in p_t.

2. Save the kinematics of the current declustering

$$
\Delta \equiv (y_1 - y_2)^2 + (\phi_1 - \phi_2)^2, \quad k_t \equiv p_{t2}\Delta,
$$

$$
m^2 \equiv (p_1 + p_2)^2, \quad z \equiv \frac{p_{t2}}{p_{t1} + p_{t2}}, \quad \psi \equiv \tan^{-1} \frac{y_2 - y_1}{\phi_2 - \phi_1}.
$$

3. Define $j = j_1$ and iterate until j is a single particle.
Lund plane representation

- Lund Diagram
 - Primary Lund Plane
 - Jet
Lund representation of a jet

- Each jet has an image associated with its primary declustering.
- For a C/A jet, Lund plane is filled left to right as we progress through declusterings of hardest branch.
- Additional information such as azimuthal angle ψ can be attached to each point.
Lund representation of a jet

- Each jet has an image associated with its primary declustering.
- For a C/A jet, Lund plane is filled left to right as we progress through declusterings of hardest branch.
- Additional information such as azimuthal angle ψ can be attached to each point.
Each jet has an image associated with its primary declustering.

For a C/A jet, Lund plane is filled left to right as we progress through declusterings of hardest branch.

Additional information such as azimuthal angle ψ can be attached to each point.
Lund representation of a jet

- Each jet has an image associated with its primary declustering.

- For a C/A jet, Lund plane is filled left to right as we progress through declusterings of hardest branch.

- Additional information such as azimuthal angle ψ can be attached to each point.
Lund representation of a jet

- Each jet has an image associated with its primary declustering.
- For a C/A jet, Lund plane is filled left to right as we progress through declusterings of hardest branch.
- Additional information such as azimuthal angle ψ can be attached to each point.
Lund representation of a jet

- Each jet has an image associated with its primary declustering.

- For a C/A jet, Lund plane is filled left to right as we progress through declusterings of hardest branch.

- Additional information such as azimuthal angle ψ can be attached to each point.
Lund representation of a jet

- Each jet has an image associated with its primary declustering.
- For a C/A jet, Lund plane is filled left to right as we progress through declusterings of hardest branch.
- Additional information such as azimuthal angle ψ can be attached to each point.
Jets as Lund images

Average over declusterings of hardest branch for 2 TeV QCD jets.

$\sqrt{s} = 14$ TeV, $p_t > 2$ TeV

Pythia8.230 (Monash13)

$\rho(\Delta R, fixed k_t)$

$\rho(\Delta R, fixed k_t)$

$16.4 < k_t < 20.1$ GeV

Pythia8.230 (Monash13)

Herwig7.1.1 (default)

Sherpa2.2.4 (default)

$0.20 < \Delta R < 0.25$

hadron+MPI

$\rho(\Delta R, fixed k_t)$

$0.20 < \Delta R < 0.25$

hadron+MPI

$\rho(\Delta R, fixed k_t)$

$0.20 < \Delta R < 0.25$

hadron+MPI

$\rho \sim 2C \frac{\alpha_s(k_t)}{\pi}$

Frédéric Dreyer

Frédéric Dreyer
Jets as Lund images

Average over declustering of hardest branch for 2 TeV QCD jets.

QCD jets, averaged primary Lund plane

$\sqrt{s} = 14$ TeV, $p_t > 2$ TeV
Pythia8.230(Monash13)

Primary Lund-plane regions
- soft-collinear
- hard-collinear (large z)
- ISR (large m)
- non-pert. (small k_t)
- MPI/UE

Non-perturbative region clearly separated from perturbative one.
Jets as Lund images

Average over declusterings of hardest branch for 2 TeV QCD jets.

\[
\ln \left(\frac{R}{m} \right), \quad \ln \left(\frac{k_t}{\text{GeV}} \right)
\]

\(\sqrt{s} = 14\ \text{TeV},\ p_t > 2\ \text{TeV}\)

Pythia8.230(Monash13), parton

QCD jets, averaged primary Lund plane

Non-perturbative region clearly separated from perturbative one.

Non-perturbative region clearly separated from perturbative one.
Analytic study of the Lund plane

To leading order in perturbative QCD and for $\Delta \ll 1$, one expects for a quark initiated jet

$$\rho \simeq \frac{\alpha_s(k_t) C_F}{\pi} \bar{z} \left(p_{gq}(\bar{z}) + p_{gq}(1 - \bar{z}) \right), \quad \bar{z} = \frac{k_t}{p_{t,jet} \Delta}$$

▶ Lund plane can be calculated analytically.
▶ Calculation is systematically improvable.
Analytic study of the Lund plane

To leading order in perturbative QCD and for $\Delta \ll 1$, one expects for a quark initiated jet

$$\rho \simeq \frac{\alpha_s(k_t) C_F}{\pi} \bar{\mathcal{Z}} \left(p_{gq}(\bar{\mathcal{Z}}) + p_{gq}(1 - \bar{\mathcal{Z}}) \right), \quad \bar{\mathcal{Z}} = \frac{k_t}{p_{t,\text{jet}} \Delta}$$

▶ Lund plane can be calculated analytically.

▶ Calculation is systematically improvable.
Analytic study of the Lund plane

To leading order in perturbative QCD and for $\Delta \ll 1$, one expects for a quark initiated jet

$$\rho \simeq \frac{\alpha_s(k_t) C_F}{\pi} \bar{z} \left(p_{gq}(\bar{z}) + p_{gq}(1 - \bar{z}) \right), \quad \bar{z} = \frac{k_t}{p_{t,jet} \Delta}$$

Lund plane can be calculated analytically.

Calculation is systematically improvable.

Can be compared to data.
Declustering other jet-algorithm sequences

- Choice of C/A algorithm to create clustering sequence related to physical properties and associated to higher-order perturbative structures
- anti-\(k_t\) or \(k_t\) algorithms result in double logarithmic enhancements

\[
\bar{\rho}_2^{(-k_t)}(\Delta, \kappa) \approx +8C_F C_A \ln^2 \frac{\Delta}{\kappa}
\]

\[
\bar{\rho}_2^{(k_t)}(\Delta, \kappa) \approx -4C_F^2 \ln^2 \frac{\Delta}{\kappa}
\]
Declustering other jet-algorithm sequences

- Choice of C/A algorithm to create clustering sequence related to physical properties and associated to higher-order perturbative structures
- anti-k_t or k_t algorithms result in double logarithmic enhancements
Lund images for QCD and W jets

- Hard splittings clearly visible, along the diagonal line with jet mass $m = m_W$.

\[
\ln\left(\frac{R}{\Delta}\right) \quad \ln\left(\frac{k_t}{\text{GeV}}\right)
\]

QCD jets, averaged primary Lund plane

\[
\sqrt{s} = 14 \text{ TeV}, \ p_t > 2 \text{ TeV} \\
\text{Pythia8.230(Monash13)}
\]

W jets, averaged primary Lund plane

\[
\sqrt{s} = 14 \text{ TeV}, \ p_t > 2 \text{ TeV} \\
\text{Pythia8.230(Monash13)}
\]
APPLICATION TO BOOSTED OBJECT TAGGING
We will now investigate the potential of the Lund plane for boosted-object identification.

Two different approaches:

- A log-likelihood function constructed from a leading emission and non-leading emissions in the primary plane.
- Use the Lund plane as input for a variety of Machine Learning methods.

As a concrete example, we will take dijet, WW and $t\bar{t}$ events.
Boosted W tagging

- LL approach already provides substantial improvement over best-performing substructure observable.

- LSTM network substantially improves on results obtained with other methods.

- Large gain in performance, particularly at higher efficiencies.
Boosted top tagging

- For top tagging primary declustering sequence doesn’t capture the full substructure information.
- Can achieve large gains in performance by taking into account the full tree.
- Dynamic Graph CNN based methods perform particularly well.

![QCD rejection v. Top tagging efficiency graph](image)

- Pythia 8.223 simulation
 - signal: $pp \rightarrow tt$, background: $pp \rightarrow jj$
 - anti-$k_T R = 1$ jets, $p_T > 500$ GeV

- Lund+LSTM [GSS18]
- EdgeConv using Lund kinematics
- ParticleNet [GQ19]
Sensitivity to non-perturbative effects

- Performance compared to resilience to MPI and hadronisation corrections.
- Vary cut on k_t, which reduces sensitivity to the non-perturbative region.

performance v. resilience [full mass information]

\[\Delta \epsilon = \epsilon - \epsilon' \]

\[\zeta = \left(\frac{\Delta \epsilon^2_S}{\langle \epsilon \rangle^2_S} + \frac{\Delta \epsilon^2_B}{\langle \epsilon \rangle^2_B} \right)^{-\frac{1}{2}} \]

(c.f. arXiv:1803.07977)

\[\langle \epsilon \rangle = \frac{1}{2} (\epsilon + \epsilon') \]

- Lund-likelihood performs well even at high resilience.
- ML approach reaches very good performance but is not particularly resilient to NP effects.
LUND IMAGES USING GANS
Learning to generate Lund images

- Images are combined in small batches of 32, each pixel value interpreted as the probability of being switched on.
- Preprocess images with rescaling and ZCA whitening.
Learning to generate Lund images

- Images are combined in small batches of 32, each pixel value interpreted as the probability of being switched on.
- Preprocess images with rescaling and ZCA whitening.

We consider three generative models

- Two Generative Adversarial Network architectures (LSGAN and WGANGP), constructed from generator G and discriminator D which compete against each other through a value function $V(G, D)$

$$
\min_G \max_D V(D, G) = \mathbb{E}_{x \sim p_{\text{data}}}[\log D(x)] + \mathbb{E}_{z \sim p_z(z)}[\log(1 - D(G(z)))] ,
$$

- and a latent variable VAE model, which uses a probabilistic encoder $q_\phi(z|x)$, and decoder $p_\theta(x|z)$ to map from prior $p_\theta(z)$. The algorithm learns the marginal likelihood of the data in this generative process

$$
\mathcal{L}(\theta, \phi) = \mathbb{E}_{q_\phi(z|x)}[\log p_\theta(x|z)] - \beta D_{\text{KL}}(q_\phi(z|x) \parallel p(z)) ,
$$

To avoid posterior collapse of VAE, we use KL annealing.
Lund images from GANs

- The LSGAN provides the most stable results.
- Differences between models can be studied using slices of the Lund plane or derived observables.
Cycle-consistent adversarial networks

- CycleGAN learns unpaired image-to-image mapping functions $G : X \rightarrow Y$ and $F : Y \rightarrow X$ between two domains X and Y.

- Forward cycle consistency $x \in X \rightarrow G(x) \rightarrow F(G(x)) \approx x$ and backward cycle consistency $y \in Y \rightarrow F(y) \rightarrow G(F(y)) \approx y$, achieved through cycle consistency loss.

- Full objective includes also adversarial losses to both mapping functions.

$$\mathcal{L}(G, F, D_X, D_Y) = \mathcal{L}_{GAN}(G, D_Y, X, Y) + \mathcal{L}_{GAN}(F, D_X, Y, X) + \lambda \mathcal{L}_{cyc}(G, F).$$
Reinterpreting events with CycleGANs

- Use CycleGAN to transform between two different domains of Lund images, e.g.
 - W jet \leftrightarrow QCD jet
 - parton-level simulation \leftrightarrow detector-level simulation
- Apply trained network to transform Lund images event-by-event by cycling through domains.
- Transformed events in good agreement with true sample.
Reinterpreting events with CycleGANs

- Use CycleGAN to transform between two different domains of Lund images, e.g.
 - W jet \leftrightarrow QCD jet
 - parton-level simulation \leftrightarrow detector-level simulation
- Apply trained network to transform Lund images event-by-event by cycling through domains.
- Transformed events in good agreement with true sample.
CONCLUSIONS
Conclusions

- Discussed a new way to study and exploit radiation patterns in a jet using the Lund plane.

- Lund kinematics can be used as inputs for W tagging with a range of methods:
 - Log-likelihood function.
 - Convolutional neural networks.
 - Recurrent and dense neural networks.
 - Graph convolutional networks.

Simple LL approach already provides strong performance, sometimes even matching the one obtained with recent ML methods.

- Provides a framework for promising application of generative models and reinforcement learning.

Wide range of experimental and theoretical opportunities brought by studying Lund diagrams for jets. A rich topic for further exploration.
BACKUP SLIDES
Log-likelihood use of Lund Plane

Log-likelihood approach takes two inputs:

▶ First one obtained from the "leading" emission, defined as first emission satisfying \(z > 0.025 \) (\(\sim \) mMDT tagger).

\[
\mathcal{L}_\ell(m, z) = \ln \left(\frac{1}{N_S} \frac{dN_S}{dmdz} / \frac{1}{N_B} \frac{dN_B}{dmdz} \right)
\]

▶ The second one which brings sensitivity to non-leading emissions.

\[
\mathcal{L}_{n\ell}(\Delta, k_t; \Delta^{(\ell)}) = \ln \left(\frac{\rho_S^{(n\ell)}}{\rho_B^{(n\ell)}} \right)
\]

Overall log-likelihood signal-background discriminator for a given jet is then given by

\[
\mathcal{L}_{tot} = \mathcal{L}_\ell(m^{(\ell)}, z^{(\ell)}) + \sum_{i \neq \ell} \mathcal{L}_{n\ell}(\Delta^{(i)}, k_t^{(i)}; \Delta^{(\ell)}) + \mathcal{N}(\Delta^{(\ell)})
\]
Tagging with LL method

- Substantial improvement over best-performing substructure observable.