Learning from the Lund plane

Epiphany 2020, Krakow, 10 January 2020

Frédéric Dreyer

based on [arXiv:1807.04758,](http://arxiv.org/abs/1807.04758) [arXiv:1903.09644](http://arxiv.org/abs/1903.09644) and [arXiv:1909.01359](http://arxiv.org/abs/1909.01359)

with Stefano Carrazza, Gavin Salam & Gregory Soyez

- At LHC energies, EW-scale particles $(W/Z/t...)$ are often produced with $p_t \gg m$, leading to collimated decays.
- Hadronic decay products are thus often reconstructed into single jets.

[Figure by G. Soyez]

- At LHC energies, EW-scale particles $(W/Z/t...)$ are often produced with $p_t \gg m$, leading to collimated decays.
- Hadronic decay products are thus often reconstructed into single jets.

- Many techniques developed to identify hard structure of a jet based on radiation patterns.
- In principle, simplest way to identify these boosted objects is by looking at the mass of the jet.

- Many techniques developed to identify hard structure of a jet based on radiation patterns.
- In principle, simplest way to identify these boosted objects is by looking at the mass of the jet.
- But jet mass distribution is highly distorted by QCD radiation and pileup.

Two main approaches to study boosted decays:

- 1. Manually constructing substructure observables that help distinguish between different origins of jets.
- 2. Apply machine learning models trained on large input images or observable basis.

Aim of this talk: new approaches bridging some of the gap between these two techniques.

Jet grooming: (Recursive) Soft Drop / mMDT

- Mass peak can be partly reconstructed by removing unassociated soft wide-angle radiation (grooming).
- Recurse through clustering tree and remove soft branch if

$$
\frac{\min(p_{t,1}, p_{t,2})}{p_{t,1} + p_{t,2}} < z_{\text{cut}} \left(\frac{\Delta R_{12}}{R_0}\right)^{\beta}
$$

[Dasgupta, Fregoso, Marzani, Salam [JHEP 1309 \(2013\) 029\]](http://arxiv.org/abs/1307.0007) [Larkoski, Marzani, Soyez, Thaler [JHEP 1405 \(2014\) 146\]](http://arxiv.org/abs/1402.2657) [FD, Necib, Soyez, Thaler [JHEP 1806 \(2018\) 093\]](https://arxiv.org/abs/1804.03657)

Jet grooming: (Recursive) Soft Drop / mMDT

- Mass peak can be partly reconstructed by removing unassociated soft wide-angle radiation (grooming).
- Recurse through clustering tree and remove soft branch if

$$
\frac{\min(p_{t,1}, p_{t,2})}{p_{t,1} + p_{t,2}} < z_{\text{cut}} \left(\frac{\Delta R_{12}}{R_0}\right)^{\beta}
$$

[Dasgupta, Fregoso, Marzani, Salam [JHEP 1309 \(2013\) 029\]](http://arxiv.org/abs/1307.0007) [Larkoski, Marzani, Soyez, Thaler [JHEP 1405 \(2014\) 146\]](http://arxiv.org/abs/1402.2657) [FD, Necib, Soyez, Thaler [JHEP 1806 \(2018\) 093\]](https://arxiv.org/abs/1804.03657)

Substructure observables

- Variety of observables have been constructed to probe the hard substructure of a jet $(V/H/t)$ decay lead to jets with multiple hard cores).
- Radiation patterns of colourless objects ($W/Z/H$) differs from quark or gluon jets.
- I Efficient discriminators can be obtained e.g. from ratio of N -subjettiness or energy correlation functions.

[Thaler, Van Tilburg [JHEP 1103 \(2011\) 015\]](https://arxiv.org/abs/1011.2268) [Larkoski, Salam, Thaler [JHEP 1306 \(2013\) 108\]](https://arxiv.org/abs/1305.0007) [Larkoski, Moult, Neill [JHEP 1412 \(2014\) 009\]](https://arxiv.org/abs/1409.6298)

Recent wave of results in applications of ML algorithms to jet physics.

Classification problems have been tackled through several orthogonal approaches

- Convolutional Neural Networks used on representation of jet as image
- Recurrent Neural Networks used on jet clustering tree.
- Linear combination or dense network applied to an observable basis $(e.g. N-subiettiness ratios, energy flow polynomials)$
- Classification problems are one of the easiest application of ML, but by far not the only one!
- Many promising applications of ML methods for:
	- fast simulations using unsupervised generative models

[Paganini, de Oliveira, Nachman [PRL 120 \(2018\) 042003\]](http://arxiv.org/abs/1705.02355)

- \blacktriangleright regression tasks such as pile-up subtraction [Komiske, Metodiev, Nachman, Schwartz [JHEP 1712 \(2017\) 051\]](http://arxiv.org/abs/1707.08600)
- \blacktriangleright anomaly detection for new physics

[Collins, Howe, Nachman [PRL 121 \(2018\) 241803\]](http://arxiv.org/abs/1805.02664)

distance metric of collider events

[Komiske, Metodiev, Thaler [arXiv:1902.02346\]](http://arxiv.org/abs/1902.02346)

 \blacktriangleright etc \dots

▶ See [ML4Jets](https://indico.cern.ch/event/809820/overview) conference taking place at NYU next week!

THE LUND PLANE

- Lund diagrams in the $(\ln z \theta, \ln \theta)$ plane are a very useful way of representing emissions.
- Different kinematic regimes are clearly separated, used to illustrate branching phase space in parton shower Monte Carlo simulations and in perturbative QCD resummations.
- I Soft-collinear emissions are emitted uniformly in the Lund plane

$$
dw^2 \propto \alpha_s \frac{dz}{z} \frac{d\theta}{\theta}
$$

Features such as mass, angle and momentum can easily be read from a Lund diagram.

Lund diagrams for substructure

Substructure algorithms can often also be interpreted as cuts in the Lund plane.

[Dasgupta, Fregoso, Marzani, Salam [JHEP 1309 \(2013\) 029\]](https://arxiv.org/abs/1307.0007)

Lund diagrams can provide a useful approach to study a range of jet-related questions

- First-principle calculations of Lund-plane variables.
- Constrain MC generators, in the perturbative and non-perturbative regions.
- Brings many soft-drop related observables into a single framework.
- Impact of medium interactions in heavy-ion collisions.
- Boosted object tagging using Machine Learning methods.

We will use this representation as a novel way to characterise radiation patterns in a jet, and study the application of recent ML tools to this picture. To create a Lund plane representation of a jet, recluster a jet *with the* Cambridge/Aachen algorithm then decluster the jet following the hardest branch.

- 1. Undo the last clustering step, defining two subjets i_1 , i_2 ordered in p_t .
- 2. Save the kinematics of the current declustering $\Delta \equiv (y_1 - y_2)^2 + (\phi_1 - \phi_2)^2$, $k_t \equiv p_{t2} \Delta$, $m^2 \equiv (p_1 + p_2)^2, \quad z \equiv \frac{p_{t2}}{p_{t1} + p_2}$ $\frac{p_{t2}}{p_{t1}+p_{t2}}, \quad \psi \equiv \tan^{-1} \frac{y_2-y_1}{\phi_2-\phi_1}$ $\overline{\phi_2-\phi_1}$.

3. Define $j = j_1$ and iterate until j is a single particle.

Lund plane representation

- Each jet has an image associated with its primary declustering.
- \blacktriangleright For a C/A jet, Lund plane is filled left to right as we progress through declusterings of hardest branch.
- Additional information such as azimuthal angle ψ can be attached to each point.

- Each jet has an image associated with its primary declustering.
- \blacktriangleright For a C/A jet, Lund plane is filled left to right as we progress through declusterings of hardest branch.
- Additional information such as azimuthal angle ψ can be attached to each point.

- Each jet has an image associated with its primary declustering.
- \blacktriangleright For a C/A jet, Lund plane is filled left to right as we progress through declusterings of hardest branch.
- Additional information such as azimuthal angle ψ can be attached to each point.

- Each jet has an image associated with its primary declustering.
- \blacktriangleright For a C/A jet, Lund plane is filled left to right as we progress through declusterings of hardest branch.
- Additional information such as azimuthal angle ψ can be attached to each point.

- Each jet has an image associated with its primary declustering.
- \blacktriangleright For a C/A jet, Lund plane is filled left to right as we progress through declusterings of hardest branch.
- Additional information such as azimuthal angle ψ can be attached to each point.

- Each jet has an image associated with its primary declustering.
- \blacktriangleright For a C/A jet, Lund plane is filled left to right as we progress through declusterings of hardest branch.
- Additional information such as azimuthal angle ψ can be attached to each point.

- Each jet has an image associated with its primary declustering.
- \blacktriangleright For a C/A jet, Lund plane is filled left to right as we progress through declusterings of hardest branch.
- Additional information such as azimuthal angle ψ can be attached to each point.

Jets as Lund images

Average over declusterings of hardest branch for 2 TeV QCD jets.

Jets as Lund images

Average over declusterings of hardest branch for 2 TeV QCD jets.

Jets as Lund images

Average over declusterings of hardest branch for 2 TeV QCD jets.

Analytic study of the Lund plane

To leading order in perturbative QCD and for $\Delta \ll 1$, one expects for a quark initiated jet

$$
\rho \simeq \frac{\alpha_s(k_t)C_F}{\pi} \bar{z} \left(p_{gq}(\bar{z}) + p_{gq}(1-\bar{z}) \right), \quad \bar{z} = \frac{k_t}{p_{t,jet}\Delta}
$$

- Lund plane can be calculated analytically.
- Calculation is systematically improvable.

Analytic study of the Lund plane

To leading order in perturbative QCD and for $\Delta \ll 1$, one expects for a quark initiated jet

$$
\rho \simeq \frac{\alpha_s(k_t)C_F}{\pi} \bar{z} \left(p_{gq}(\bar{z}) + p_{gq}(1-\bar{z}) \right), \quad \bar{z} = \frac{k_t}{p_{t,jet}\Delta}
$$

- Lund plane can be calculated analytically.
- Calculation is systematically improvable.

Analytic study of the Lund plane

To leading order in perturbative QCD and for $\Delta \ll 1$, one expects for a quark initiated jet

$$
\rho \simeq \frac{\alpha_s(k_t)C_F}{\pi} \bar{z} \left(p_{gq}(\bar{z}) + p_{gq}(1-\bar{z}) \right), \quad \bar{z} = \frac{k_t}{p_{t,jet}\Delta}
$$

- Lund plane can be calculated analytically.
- Calculation is systematically improvable.
- Can be compared to data.

Declustering other jet-algorithm sequences

- Choice of C/A algorithm to create clustering sequence related to physical properties and associated to higher-order perturbative structures
- anti- k_t or k_t algorithms result in double logarithmic enhancements

$$
\bar{\rho}_2^{(\text{anti-}k_t)}(\Delta,\kappa) \simeq +8C_F C_A \ln^2\frac{\Delta}{\kappa} \qquad \qquad \bar{\rho}_2^{(k_t)}(\Delta,\kappa) \simeq -4C_F^2 \ln^2\frac{\Delta}{\kappa}
$$

Declustering other jet-algorithm sequences

- Choice of C/A algorithm to create clustering sequence related to physical properties and associated to higher-order perturbative structures
- anti- k_t or k_t algorithms result in double logarithmic enhancements

Lund images for QCD and W jets

Hard splittings clearly visible, along the diagonal line with jet mass $m = m_W$.

APPLICATION TO BOOSTED OBJECT **TAGGING**

We will now investigate the potential of the Lund plane for boosted-object identification.

Two different approaches:

- \triangleright A log-likelihood function constructed from a leading emission and non-leading emissions in the primary plane.
- Use the Lund plane as input for a variety of Machine Learning methods.

As a concrete example, we will take dijet, WW and $t\bar{t}$ events.

- \blacktriangleright LL approach already provides substantial improvement over best-performing substructure observable.
- \blacktriangleright LSTM network substantially improves on results obtained with other methods.
- Large gain in performance, particularly at higher efficiencies.

- For top tagging primary declustering sequence doesn't capture the full substructure information.
- Can achieve large gains in performance by taking into account the full tree.
- Dynamic Graph CNN based methods perform particularly well.

Sensitivity to non-perturbative effects

- I Performance compared to resilience to MPI and hadronisation corrections.
- I Vary cut on k_t , which reduces sensitivity to the non-perturbative region.

Derformance v. resilience Ifull mass information performance v. resilience [full mass information]

- Lund-likelihood performs well even at high resilience.
- ML approach reaches very good performance but is not particularly resilient to NP effects.

LUND IMAGES USING GANS

Learning to generate Lund images

- Images are combined in small batches of 32, each pixel value interpreted as the probability of being switched on.
- Preprocess images with rescaling and ZCA whitening.

- Images are combined in small batches of 32, each pixel value interpreted as the probability of being switched on.
- \blacktriangleright Preprocess images with rescaling and ZCA whitening.

We consider three generative models

 \triangleright Two Generative Adversarial Network architectures (LSGAN and WGANGP), constructed from generator G and discriminator D which compete against each other through a value function $V(G, D)$

min max $V(D, G) = \mathbb{E}_{x \sim p_{data}} [\log D(x)] + \mathbb{E}_{z \sim p_z(z)} [\log(1 - D(G(z)))]$

and a latent variable VAE model, which uses a probabilistic encoder $q_{\phi}(z|x)$, and decoder $p_{\theta}(x|z)$ to map from prior $p_{\theta}(z)$. The algorithm learns the marginal lilelihood of the data in this generative process

$$
\mathcal{L}(\theta, \phi) = \mathbb{E}_{q_{\phi}(z|x)}[\log p_{\theta}(x|z)] - \beta D_{\mathsf{KL}}(q_{\phi}(z|x)||p(z)),
$$

To avoid posterior collapse of VAE, we use KL annealing.

Frédéric Dreyer 22/26

Lund images from GANs

- The LSGAN provides the most stable results.
- Differences between models can be studied using slices of the Lund plane or derived observables.

Cycle-consistent adversarial networks

- \triangleright CycleGAN learns unpaired image-to-image mapping functions $G: X \to Y$ and $F: Y \to X$ between two domains X and Y.
- Forward cycle consistency $x \in X \to G(x) \to F(G(x)) \approx x$ and backward cycle consistency $y \in Y \to F(y) \to G(F(y)) \approx y$, achieved through cycle consistency loss.
- \blacktriangleright Full objective includes also adversarial losses to both mapping functions.

 $\mathcal{L}(G, F, D_X, D_Y) = \mathcal{L}_{GAN}(G, D_Y, X, Y) + \mathcal{L}_{GAN}(F, D_X, Y, X) + \lambda \mathcal{L}_{cyc}(G, F).$

Reinterpreting events with CycleGANs

- Use CycleGAN to transform between two different domains of Lund images, e.g.
	- \triangleright W jet \leftrightarrow QCD jet
	- \triangleright parton-level simulation \leftrightarrow detector-level simulation
- Apply trained network to transform Lund images event-by-event by cycling through domains.
- Transformed events in good agreement with true sample.

Reinterpreting events with CycleGANs

- Use CycleGAN to transform between two different domains of Lund images, e.g.
	- \triangleright W jet \leftrightarrow QCD jet
	- $parton$ -level simulation \leftrightarrow detector-level simulation
- Apply trained network to transform Lund images event-by-event by cycling through domains.
- Transformed events in good agreement with true sample.

CONCLUSIONS

- Discussed a new way to study and exploit radiation patterns in a jet using the Lund plane.
- Lund kinematics can be used as inputs for W tagging with a range of methods:
	- \blacktriangleright Log-likelihood function.
	- \triangleright Convolutional neural networks.
	- \blacktriangleright Recurrent and dense neural networks.
	- \blacktriangleright Graph convolutional networks.

Simple LL approach already provides strong performance, sometimes even matching the one obtained with recent ML methods.

 \triangleright Provides a framework for promising application of generative models and reinforcement learning.

Wide range of experimental and theoretical opportunities brought by studying Lund diagrams for jets. A **rich topic** for **further exploration**.

BACKUP SLIDES

Log-likelihood use of Lund Plane

Log-likelihood approach takes two inputs:

First one obtained from the "leading" emission, defined as first emision satisfying $z > 0.025$ (~ mMDT tagger).

$$
\mathcal{L}_{\ell}(m, z) = \ln \left(\frac{1}{N_S} \frac{dN_S}{dmdz} / \frac{1}{N_B} \frac{dN_B}{dmdz} \right)
$$

The second one which brings sensitivity to non-leading emissions.

$$
\mathcal{L}_{n\ell}(\Delta, k_t; \Delta^{(\ell)}) = \ln \left(\rho_S^{(n\ell)} / \rho_B^{(n\ell)} \right)
$$

Overall log-likelihood signal-background discriminator for a given jet is then given by

$$
\mathcal{L}_{\text{tot}} = \mathcal{L}_{\ell}(m^{(\ell)}, z^{(\ell)}) + \sum_{i \neq \ell} \mathcal{L}_{n\ell}(\Delta^{(i)}, k_t^{(i)}; \Delta^{(\ell)}) + \mathcal{N}(\Delta^{(\ell)})
$$

- Compare the LL approach in specific mass-bin with equivalent results from the Les Houches 2017 report [\(arXiv:1803.07977\)](https://arxiv.org/abs/1803.07977).
- Substantial improvement over best-performing substructure observable.

