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Boosted objects at the LHC

I At LHC energies, EW-scale particles (W/Z/t. . . ) are often produced
with ?C � <, leading to collimated decays.

I Hadronic decay products are thus often reconstructed into single jets.

[Figure by G. Soyez]
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Boosted objects at the LHC

I Many techniques developed to identify hard structure of a jet based on
radiation patterns.

I In principle, simplest way to identify these boosted objects is by looking
at the mass of the jet.

I But jet mass distribution is highly distorted by QCD radiation and
pileup.
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Identifying boosted objects

Two main approaches to study boosted decays:

1. Manually constructing substructure observables that help distinguish
between different origins of jets.

2. Apply machine learning models trained on large input images or
observable basis.

Aim of this talk: new approaches bridging some of the gap between these
two techniques.

Frédéric Dreyer 3/26



Jet grooming: (Recursive) Soft Drop / mMDT

I Mass peak can be partly
reconstructed by removing
unassociated soft wide-angle
radiation (grooming).

I Recurse through clustering tree
and remove soft branch if

min(?C ,1 , ?C ,2)
?C ,1 + ?C ,2

< Icut

(
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'0

)�

W jet

 0
 70  80  90  100  110

pp->WW, 13 TeV, Pythia 8 (4C)
R=1, ptj > 500 GeV, |yj|<5

dσ
/d

m
j [

nb
/G

eV
]

mj [GeV]

Hard partons
Hadrons with UE

[Dasgupta, Fregoso, Marzani, Salam JHEP 1309 (2013) 029]
[Larkoski, Marzani, Soyez, Thaler JHEP 1405 (2014) 146]

[FD, Necib, Soyez, Thaler JHEP 1806 (2018) 093]
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Substructure observables

I Variety of observables have been
constructed to probe the hard
substructure of a jet (+/�/C decay
lead to jets with multiple hard cores).

I Radiation patterns of colourless
objects (,///�) differs from quark or
gluon jets.

I Efficient discriminators can be obtained
e.g. from ratio of #-subjettiness or
energy correlation functions.

[Thaler, Van Tilburg JHEP 1103 (2011) 015]
[Larkoski, Salam, Thaler JHEP 1306 (2013) 108]
[Larkoski, Moult, Neill JHEP 1412 (2014) 009]
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Applying Machine Learning in Jet Physics

Recent wave of results in applications of ML algorithms to jet physics.

Classification problems have been tackled through several orthogonal
approaches

I Convolutional Neural Networks used on representation of jet as image

I Recurrent Neural Networks used on jet clustering tree.
I Linear combination or dense network applied to an observable basis

(e.g. #-subjettiness ratios, energy flow polynomials)
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Beyond classification problems

I Classification problems are one of the easiest application of ML, but by
far not the only one!

I Many promising applications of ML methods for:
I fast simulations using unsupervised generative models

[Paganini, de Oliveira, Nachman PRL 120 (2018) 042003]

I regression tasks such as pile-up subtraction
[Komiske, Metodiev, Nachman, Schwartz JHEP 1712 (2017) 051]

I anomaly detection for new physics
[Collins, Howe, Nachman PRL 121 (2018) 241803]

I distance metric of collider events
[Komiske, Metodiev, Thaler arXiv:1902.02346]

I etc . . .
I See ML4Jets conference taking place at NYU next week!
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THE LUND PLANE



Lund diagrams

I Lund diagrams in the (ln I�, ln�)
plane are a very useful way of
representing emissions.

I Different kinematic regimes are
clearly separated, used to illustrate
branching phase space in parton
shower Monte Carlo simulations and
in perturbative QCD resummations.

I Soft-collinear emissions are emitted
uniformly in the Lund plane

3F2 ∝ 
B
3I

I

3�
�

Primary Lund-plane regions

soft-collinear

hard-collinear (large
z)

IS
R
(larg

e
Δ
)

non-pert. (small kt)

MPI/UE

ln(R/Δ)
ln
(k

t/
G
eV
)

Frédéric Dreyer 8/26



Lund diagrams

Features such as mass, angle and momentum can easily be read from a
Lund diagram.

jet mass ≡ <2

?2
C '

2 ≈ I1�2
1
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Lund diagrams for substructure

Substructure algorithms can often also be interpreted as cuts in the Lund
plane.

[Dasgupta, Fregoso, Marzani, Salam JHEP 1309 (2013) 029]
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Studying jets in the Lund plane

Lund diagrams can provide a useful approach to study a range of jet-related
questions

I First-principle calculations of Lund-plane variables.
I Constrain MC generators, in the perturbative and non-perturbative

regions.
I Brings many soft-drop related observables into a single framework.
I Impact of medium interactions in heavy-ion collisions.
I Boosted object tagging using Machine Learning methods.

We will use this representation as a novel way to characterise radiation
patterns in a jet, and study the application of recent ML tools to this picture.
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Lund plane representation

To create a Lund plane representation of a jet, recluster a jet 9 with the
Cambridge/Aachen algorithm then decluster the jet following the hardest
branch.

1. Undo the last clustering step, defining two subjets 91 , 92
ordered in ?C .

2. Save the kinematics of the current declustering
Δ ≡ (H1 − H2)2 + ()1 − )2)2 , :C ≡ ?C2Δ,

<2 ≡ (?1 + ?2)2 , I ≡
?C2

?C1+?C2
, # ≡ tan−1 H2−H1

)2−)1
.

3. Define 9 = 91 and iterate until 9 is a single particle.
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Lund plane representation
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Lund representation of a jet

I Each jet has an image
associated with its primary
declustering.

I For a C/A jet, Lund plane is filled
left to right as we progress
through declusterings of hardest
branch.

I Additional information such as
azimuthal angle # can be
attached to each point. 0 1 2 3 4 5 6 7 8
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Lund image for a 2 TeV QCD jet
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Jets as Lund images

Average over declusterings of hardest branch for 2 TeV QCD jets.
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Jets as Lund images

Average over declusterings of hardest branch for 2 TeV QCD jets.
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Jets as Lund images

Average over declusterings of hardest branch for 2 TeV QCD jets.
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Analytic study of the Lund plane

To leading order in perturbative QCD and for Δ � 1, one expects for a
quark initiated jet
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I Lund plane can be calculated
analytically.

I Calculation is systematically
improvable.

I Can be compared to data.
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?6@(Ī) + ?6@(1 − Ī)
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Declustering other jet-algorithm sequences

I Choice of C/A algorithm to create clustering sequence related to
physical properties and associated to higher-order perturbative
structures

I anti-:C or :C algorithms result in double logarithmic enhancements
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Declustering other jet-algorithm sequences

I Choice of C/A algorithm to create clustering sequence related to
physical properties and associated to higher-order perturbative
structures
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Lund images for QCD and W jets

I Hard splittings clearly visible, along the diagonal line with jet mass
< = <, .
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APPLICATION TO BOOSTED OBJECT
TAGGING



Tagging jets in the Lund Plane

We will now investigate the potential of the Lund plane for boosted-object
identification.

Two different approaches:

I A log-likelihood function constructed from a leading emission and
non-leading emissions in the primary plane.

I Use the Lund plane as input for a variety of Machine Learning methods.

As a concrete example, we will take dijet,,, and CC̄ events.
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Boosted] tagging

I LL approach already
provides substantial
improvement over
best-performing substructure
observable.

I LSTM network substantially
improves on results obtained
with other methods.

I Large gain in performance,
particularly at higher
efficiencies.
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Boosted top tagging

I For top tagging primary
declustering sequence
doesn’t capture the full
substructure information.

I Can achieve large gains in
performance by taking into
account the full tree.

I Dynamic Graph CNN based
methods perform particularly
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Sensitivity to non-perturbative effects
I Performance compared to resilience to MPI and hadronisation corrections.
I Vary cut on :C , which reduces sensitivity to the non-perturbative region.
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LUND IMAGES USING GANS



Learning to generate Lund images

I Images are combined in small batches of 32, each pixel value
interpreted as the probability of being switched on.

I Preprocess images with rescaling and ZCA whitening.
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Learning to generate Lund images

I Images are combined in small batches of 32, each pixel value
interpreted as the probability of being switched on.

I Preprocess images with rescaling and ZCA whitening.

We consider three generative models
I Two Generative Adversarial Network architectures (LSGAN and WGANGP),

constructed from generator � and discriminator � which compete against
each other through a value function +(�, �)

min
�

max
�

+(�, �) = EG∼?data [log�(G)] + EI∼?I (I)[log(1 − �(�(I)))] ,

I and a latent variable VAE model, which uses a probabilistic encoder @)(I |G),
and decoder ?�(G |I) to map from prior ?�(I). The algorithm learns the
marginal lilelihood of the data in this generative process

ℒ(�, )) = E@)(I |G)[log ?�(G |I)] − ��KL(@)(I |G)| |?(I)) ,

To avoid posterior collapse of VAE, we use KL annealing.
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Lund images from GANs

I The LSGAN provides the most stable results.
I Differences between models can be studied using slices of the Lund

plane or derived observables.
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Cycle-consistent adversarial networks

I CycleGAN learns unpaired image-to-image mapping functions
� : - → . and � : . → - between two domains - and ..

I Forward cycle consistency G ∈ - → �(G) → �(�(G)) ≈ G and
backward cycle consistency H ∈ . → �(H) → �(�(H)) ≈ H, achieved
through cycle consistency loss.

I Full objective includes also adversarial losses to both mapping
functions.

ℒ(�, �, �- , �.) = ℒGAN(�, �. , -, .) + ℒGAN(�, �- , ., -) + �ℒcyc(�, �) .
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Reinterpreting events with CycleGANs
I Use CycleGAN to transform between two different domains of Lund

images, e.g.
I , jet↔ QCD jet
I parton-level simulation↔ detector-level simulation

I Apply trained network to transform Lund images event-by-event by
cycling through domains.

I Transformed events in good agreement with true sample.
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CONCLUSIONS



Conclusions

I Discussed a new way to study and exploit radiation patterns in a jet
using the Lund plane.

I Lund kinematics can be used as inputs for, tagging with a range of
methods:
I Log-likelihood function.
I Convolutional neural networks.
I Recurrent and dense neural networks.
I Graph convolutional networks.

Simple LL approach already provides strong performance, sometimes
even matching the one obtained with recent ML methods.

I Provides a framework for promising application of generative models
and reinforcement learning.

Wide range of experimental and theoretical opportunities brought by
studying Lund diagrams for jets. A rich topic for further exploration.
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BACKUP SLIDES



Log-likelihood use of Lund Plane

Log-likelihood approach takes two inputs:

I First one obtained from the “leading” emission, defined as first emision
satisfying I > 0.025 (∼ mMDT tagger).

ℒℓ (<, I) = ln
(

1
#(

3#(

3<3I

/
1
#�

3#�

3<3I

)
I The second one which brings sensitivity to non-leading emissions.

ℒ=ℓ (Δ, :C ;Δ(ℓ )) = ln
(
�(=ℓ )
(

/
�(=ℓ )
�

)
Overall log-likelihood signal-background discriminator for a given jet is then
given by

ℒtot = ℒℓ (<(ℓ ) , I(ℓ )) +
∑
8≠ℓ

ℒ=ℓ (Δ(8) , :(8)C ;Δ(ℓ )) + N(Δ(ℓ ))
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Tagging with LL method

I Compare the LL approach in
specific mass-bin with equivalent
results from the Les Houches
2017 report (arXiv:1803.07977).

I Substantial improvement over
best-performing substructure
observable.
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