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Boosted objects at the LHC

> At LHC energies, EW-scale particles (W/Z/t...) are often produced
with p; > m, leading to collimated decays.

> Hadronic decay products are thus often reconstructed into single jets.

pr S m p: > m

[Figure by G. Soyez]
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Boosted objects at the LHC

> Many techniques developed to identify hard structure of a jet based on
radiation patterns.

> In principle, simplest way to identify these boosted objects is by looking
at the mass of the jet.
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Boosted objects at the LHC

> Many techniques developed to identify hard structure of a jet based on
radiation patterns.

> In principle, simplest way to identify these boosted objects is by looking
at the mass of the jet.

> But jet mass distribution is highly distorted by QCD radiation and
pileup.

T T
Hard partons
Hadrons with UE =

pp->WW, 13 TeV, Pythia 8 (4C)
R=1, py > 500 GeV, |y;|<5

dc/dmj [nb/GeV]
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m; [GeV]
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Identifying boosted objects

Two main approaches to study boosted decays:

1. Manually constructing substructure observables that help distinguish
between different origins of jets.

2. Apply machine learning models trained on large input images or
observable basis.

Aim of this talk: new approaches bridging some of the gap between these
two techniques.
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Jet grooming: (Recursive) Soft Drop / mMDT

T T
Hard partons
Hadrons with UE =

> Mass peak can be partly
reconstructed by removing
unassociated soft wide-angle
radiation (grooming).

pp->WW, 13 TeV, Pythia 8 (4C)
R=1, py > 500 GeV, |yj|<5

do/dmj [nb/GeV]

> Recurse through clustering tree
and remove soft branch if

min(p;,1, pt,2) . o~ .
pt,l + pt,Z 70 80 90 100 110
mj [GeV]

[Dasgupta, Fregoso, Marzani, Salam JHEP 1309 (2013) 029]
[Larkoski, Marzani, Soyez, Thaler JHEP 1405 (2014) 146]
[FD, Necib, Soyez, Thaler JHEP 1806 (2018) 093]
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Jet grooming: (Recursive) Soft Drop / mMDT

T T
Hard partons

>
Mass peak can be partly R
reconstructed by removing Recursive Soft Drop
i . pp->WW, 13 TeV, Pythia 8 (4C)
unassociated soft wide-angle R=1, py > 500 GeV, |yj| <5
radiation (grooming).

RSD: N=e, 70,=0.05, B=1

do/dmj [nb/GeV]

> Recurse through clustering tree
and remove soft branch if

min(p¢,1, p,2) ,
pt,l ais Pt,z 70 80 90 100 110
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Substructure observables

65 GeV < m <95 GeV
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Applying Machine Learning in Jet Physics

Recent wave of results in applications of ML algorithms to jet physics.

Classification problems have been tackled through several orthogonal
approaches

» Convolutional Neural Networks used on representation of jet as image

> Recurrent Neural Networks used on jet clustering tree.

> Linear combination or dense network applied to an observable basis
(e.g. N-subjettiness ratios, energy flow polynomials)
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Beyond classification problems

> Classification problems are one of the easiest application of ML, but by
far not the only one!

> Many promising applications of ML methods for:
» fast simulations using unsupervised generative models
[Paganini, de Oliveira, Nachman PRL 120 (2018) 042003]

> regression tasks such as pile-up subtraction
[Komiske, Metodiev, Nachman, Schwartz JHEP 1712 (2017) 051]

> anomaly detection for new physics
[Collins, Howe, Nachman PRL 121 (2018) 241803]

> distance metric of collider events
[Komiske, Metodiev, Thaler arXiv:1902.02346]

> efc...
> See ML4Jets conference taking place at NYU next week!
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Lund diagrams

» Lund diagrams in the (Inz6, In 0)
plane are a very useful way of
representing emissions.

Primary Lund-plane regions

> Different kinematic regimes are
clearly separated, used to illustrate
branching phase space in parton
shower Monte Carlo simulations and
in perturbative QCD resummations.

In(kt/GeV)

(v abue)) Ys|

> Soft-collinear emissions are emitted
uniformly in the Lund plane S
dz do In(R/D)

dw? o« qg— —
*z 6
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Lund diagrams

Features such as mass, angle and momentum can easily be read from a
Lund diagram.

log( z 6)
A
Emission with ]_ —_
mom fraction z

z

2
v

jet mass = bRz~ 2104
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Lund diagrams for substructure

Substructure algorithms can often also be interpreted as cuts in the Lund
plane.

P<Z oy P far Pruning

In z6

<&
@,
“

prune

N
Y

(‘(/,6\

/0/

In 1/6
[Dasgupta, Fregoso, Marzani, Salam JHEP 1309 (2013) 029]
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Studying jets in the Lund plane

Lund diagrams can provide a useful approach to study a range of jet-related
questions

> First-principle calculations of Lund-plane variables.

> Constrain MC generators, in the perturbative and non-perturbative
regions.

> Brings many soft-drop related observables into a single framework.
> Impact of medium interactions in heavy-ion collisions.

> Boosted object tagging using Machine Learning methods.

We will use this representation as a novel way to characterise radiation
patterns in a jet, and study the application of recent ML tools to this picture.
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Lund plane representation

To create a Lund plane representation of a jet, recluster a jet j with the

Cambridge/Aachen algorithm then decluster the jet following the hardest
branch.

1. Undo the last clustering step, defining two subjets ji, j»
ordered in py.

2. Save the kinematics of the current declustering

A=(y1—y2)* + (1= P2)? ki =pnA,

m* = (p1+p2)’, z= Ak Y = tan ™! 27y

T opntpe’ Po—1

3. Define j = j; and iterate until j is a single particle.
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Lund plane representation
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Lund representation of a jet

> Each jet has an image
associated with its primary
declustering.

> For a C/A jet, Lund plane is filled
left to right as we progress
through declusterings of hardest
branch.

> Additional information such as
azimuthal angle ¢ can be
attached to each point.

In(k¢/GeV)

-2

Lund image for a 2 TeV QCD jet

0 1 2 3 5 6 7 8

4
In(R/A)

/S
N
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Lund representation of a jet

> Each jet has an image
associated with its primary
declustering.

> For a C/A jet, Lund plane is filled
left to right as we progress
through declusterings of hardest
branch.
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Vs =14TeV, p;>2 TeV
Pythia8.230(Monash13)

In(ke/GeV)

0.0 05 1.0 1.5 2.0 25 3.0 35 4.0 45 50
In(R/B)

[ O
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p(B, ke)

Frédéric Dreyer

p(AR, fixed ki)

p(fixed AR, ki)

0.5

0.3

0.2
0.15

0.1 [

Loy i
\ — ==~ T
e TR s \.\:\ i
RN
[[ = Pythia8.230 (Monash13) N 7
L = Herwig7.1.1 (default) J
----- Sherpa2.2.4 (default)
L ! L L
1 0.5 0.2 0.1 0.02 0.01
AR
T T T T
0.20<AR<0.25
hadron+MP| |
L Levd Lot 1
0102 05 1 2 5 10 20 50 100200 500
ke [GeV]
14/26



Jets as Lund images

In(ke/GeV)

Average over declusterings of hardest branch for 2 TeV QCD jets.

; QCD jets, averaged primary Lund plane

VE=14TeV, p>2 TeV P : ) :
6 pythia.230(Monash13) 8 Primary Lund-plane regions
5 <

£
4
3
2
1
0 -
Non-perturbative
-1 - B
-2
0.0 05 1.0 15 20 25 3.0 35 40 45 50
In(R/A) In(R/2)

00 01 02 03 04 05 06 0.7 08 09

Non-perturbative region clearly separated from perturbative one.
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Jets as Lund images

Average over declusterings of hardest branch for 2 TeV QCD jets.

Primary Lund-plane regions

In(k/GeV)

In(k¢/GeV)

00 05 1.0 1.5 20 25 3.0 3.5 4.0 45 5.0 |n(R/A)
In(R/D)

[ O
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Non-perturbative region clearly separated from perturbative one.
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Analytic study of the Lund plane

To leading order in perturbative QCD and for A < 1, one expects for a
quark initiated jet

Ofs(kt)CF _

p= TZ (pgq(z) +pgqe(1— Z)) , Z=

ki
Pt,jetA

LO analytic

> Lund plane can be calculated
o1 analytically.

> Calculation is systematically
improvable.

0.001

In 14y,

Frédéric Dreyer 15/26



Analytic study of the Lund plane

To leading order in perturbative QCD and for A < 1, one expects for a
quark initiated jet

as(kt)CF _

p= TZ (pgq(z) +pgqe(1— Z)) , Z=

ki
Pt,jetA

LO analytic / MC

> Lund plane can be calculated
analytically.

> Calculation is systematically
improvable.

F = -r:j 05
2 3 o —

= i
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Analytic study of the Lund plane

To leading order in perturbative QCD and for A < 1, one expects for a
quark initiated jet

as(kt)CF _

p=—""7% (Pgq(2) +pge(1-2)), zZ=

ki
Pl,jetA

ATLAS Preliminary Vs = 13 TeV, 139 fb”'

0.08 —
g
0.07 E

£
0.06 ©
N

> Lund plane can be calculated
analytically.

0.05 =

> Calculation is systematically
b improvable.

= > Can be compared to data.

0 05 1 15 2 25 3 35 4 45 5
IN(R/AR)

10
\R = AR(emission, core)
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Declustering other jet-algorithm sequences

> Choice of C/A algorithm to create clustering sequence related to
physical properties and associated to higher-order perturbative

structures

> anti-k; or k; algorithms result in double logarithmic enhancements

) A
ﬁ;aml kr)(A, k) = +8CF C4 In? e

anti-k C/A 3
)y’)"; X )y"% =.
—q - q

Frédéric Dreyer
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Declustering other jet-algorithm sequences

> Choice of C/A algorithm to create clustering sequence related to
physical properties and associated to higher-order perturbative
structures

> anti-k; or k; algorithms result in double logarithmic enhancements

Lund plane at O(a2) - anti-k; Lund plane at O(a2) - k¢ Lund plane at O(a2) - C/A
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Lund images for QCD and W jets

> Hard splittings clearly visible, along the diagonal line with jet mass
m = mwy.

QCD jets, averaged primary Lund plane ; W jets, averaged primary Lund plane

VE=14TeV, p;>2 TeV
Pythia8.230(Monash13)

V5 =14TeV, p,>2 TeV
Pythia8.230(Monash13)

In(ke/GeV)
In(k:/GeV)

-2 -
0.0 05 1.0 1.5 2.0 25 3.0 3.5 4.0 45 50 0.0 05 1.0 1.5 2.0 25 3.0 35 4.0 45 50
In(R/A) In(R/A)

(S
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p(B, kr) Ps(B, ke)
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APPLICATION TO BOOSTED OBJECT
TAGGING



Tagging jets in the Lund Plane

We will now investigate the potential of the Lund plane for boosted-object
identification.

Two different approaches:

> A log-likelihood function constructed from a leading emission and
non-leading emissions in the primary plane.

> Use the Lund plane as input for a variety of Machine Learning methods.

As a concrete example, we will take dijet, WW and tt events.
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Boosted W tagging

QCD rejection v. W efficiency
5000 Tz

%) Pythia8(Monash13)
> LL approach already 2000 1 R hadron +MPi
. . 1000 A R
provides substantial 500 R B
improvement over 200 1 R
o
best-performing substructure & 1‘;2 1 etimageronn NOR
observable. - 1 ees Lund Image+CNN  \_
20 1"==. Lund+DNN
10 3 —— Lund+LST™M
> LSTM network substantially 5 { =="Lund-+likelihood
R . 4 o—_ [loose]
improves on results obtained 2 g
with other methods. ,0.0 01 02 03 04 05 06 07 0.8 0.9 10
=2
. S o
+ 1
> Large gain in performance, o3 0]
1 1 © O .
particularly at higher 8E 03
'] . ) 0'2
efficiencies.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Ew
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Boosted top tagging

QCD rejection v. Top tagging efficiency

> For top tagging primary Pythia 8.223 simulation
. signal: pp - tt, background: pp - jj
declustering sequence 10000 antik R =1 jets, p> 500 GeV

doesn’t capture the full
substructure information.

1000 o

> Can achieve large gains in
performance by taking into 100 5
account the full tree.

1/eqco

10
» Dynamic Graph CNN based — Lund+LSTM [GSS18)
. —— EdgeConv using Lund kinematics
methods perform particularly — ParticleNet [GQ19]
well. 00 01 02 03 04 05 06 07 08 09 10
ETop
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Sensitivity to non-perturbative effects

> Performance compared to resilience to MPI and hadronisation corrections.

> Vary cut on k;, which reduces sensitivity to the non-perturbative region.
performance v. resilience [full mass information]

T T T T
no In k cut LH 2017+BDT

20 |- % -1
LH 2017+BDT optimal
In ke cut = -1 plcosel+gpT v

W

véaco
e
T

Lund+likelihood —e—
Lund-LSTM —aA— ]

[
e
©
£ I
g 10| > Lund-likelihood performs
& well even at high resilience.
5L > ML approach reaches very
0.4 good performance but is
pe>2 TeV . AR
. . . PythiaBMonash13), CARD) not particularly resilient to
0 5 4 6 8 10 NP effects.

resilience
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LUND IMAGES USING GANS



Learning to generate Lund images

> Images are combined in small batches of 32, each pixel value
interpreted as the probability of being switched on.

> Preprocess images with rescaling and ZCA whitening.

Generated sample

Raw input
P! 1.0
6 6
0.5
4 4
]
= s
3 3
Q 2 Q 2 0.0
2 E;
i mm E -~
m ]
[ ] ] ) [ ]
o = = Preprocessed input Raw generated output of WM " —os
2 2 L] =
L}
-1.0
o 4 6 ] a 6
In(1/45) In(1/856)
s s
3 3
S S
~ ~
= E
-2
0 a4 6 4
In(1/8s5) In(1/8s5)
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Learning to generate Lund images

> Images are combined in small batches of 32, each pixel value
interpreted as the probability of being switched on.

> Preprocess images with rescaling and ZCA whitening.
We consider three generative models

» Two Generative Adversarial Network architectures (LSGAN and WGANGP),
constructed from generator G and discriminator D which compete against
each other through a value function V(G, D)

min maxV (D, G) = Ex-pyy[10g D()] + Ex.. - [log(1 - D(G())],

> and a latent variable VAE model, which uses a probabilistic encoder g (z|x),
and decoder pg(x|z) to map from prior pg(z). The algorithm learns the
marginal lilelihood of the data in this generative process

L(0, 9) = Egz1x)[log pe(x]2)] = BDki(q4(z]x)]|p(2)) ,

To avoid posterior collapse of VAE, we use KL annealing.
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Lund images from GANs

» The LSGAN provides the most stable results.

> Differences between models can be studied using slices of the Lund
plane or derived observables.

reference

N

generated

generatedjreference

14
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08
06

s

Intk/Gev)
Intki/Gev)
Intk/Gew)

i um )

Fixed kt slice

— LSGAN

Fixed A, slice

_— Soft Drop multiplicity

— VAE

g 2 — Pythia Zewt=0.007, B= =1, B = 0.0 [ LSGAN

i E 1 WGANGP
b 3 ) VAE

e &

3 <

1 Pythia 8

7.4<k(GeV]<25.8

ratio to Pythia 8

6 . .00 + J
L 12
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Cycle-consistent adversarial networks

> CycleGAN learns unpaired image-to-image mapping functions
G:X —>YandF:Y — X between two domains X and Y.

» Forward cycle consistency x € X — G(x) — F(G(x)) ~ x and
backward cycle consistency y € Y — F(y) — G(F(y)) = y, achieved
through cycle consistency loss.

> Full objective includes also adversarial losses to both mapping
functions.

L(G,F,Dx,Dy) = Lean(G, Dy, X,Y) + Lean(F, Dx, Y, X) + A Leye(G, F) .

Summer > Winter

Monet < Photos

winter — summer

photo —>Monet horse — zebra
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Reinterpreting events with CycleGANs

> Use CycleGAN to transform between two different domains of Lund
images, e.g.
> W jet & QCD jet
> parton-level simulation < detector-level simulation
> Apply trained network to transform Lund images event-by-event by
cycling through domains.
> Transformed events in good agreement with true sample.

parton level detector level parton level

020
015
0104
005
000
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> Use CycleGAN to transform between two different domains of Lund
images, e.g.
> W jet & QCD jet
> parton-level simulation < detector-level simulation
> Apply trained network to transform Lund images event-by-event by
cycling through domains.
> Transformed events in good agreement with true sample.
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CONCLUSIONS



Conclusions

> Discussed a new way to study and exploit radiation patterns in a jet
using the Lund plane.

> Lund kinematics can be used as inputs for W tagging with a range of
methods:

> Log-likelihood function.

> Convolutional neural networks.

> Recurrent and dense neural networks.

> Graph convolutional networks.
Simple LL approach already provides strong performance, sometimes
even matching the one obtained with recent ML methods.

> Provides a framework for promising application of generative models
and reinforcement learning.

Wide range of experimental and theoretical opportunities brought by

studying Lund diagrams for jets. A rich topic for further exploration.
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BACKUP SLIDES



Log-likelihood use of Lund Plane

Log-likelihood approach takes two inputs:

> First one obtained from the “leading” emission, defined as first emision
satisfying z > 0.025 (~ mMDT tagger).

1 dNs 1 dNg
Ns dmdz | Ng dmdz

Ly(m,z) =In (

> The second one which brings sensitivity to non-leading emissions.

Lueld, ki A0) =1n (/i)

Overall log-likelihood signal-background discriminator for a given jet is then
given by

Liot = Lo(m,zY) + Z LMD, K A0) + N(AO)

i+l
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Tagging with LL method

QCD rejection v. W efficiency

5000
Pythia8(Monash13)
2000 1 hadron+MPI
1000 o Delphes+SPRAL
500 4 pe>2TeV, 65<m<105 GeV
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