Effects of in-medium k_T broadening on di-jet observables

<u>M. Rohrmoser</u>^a, K. Kutak^a, A. v. Hameren^a, W. Placzek^b, K. Tywoniuk^c

^a IFJ-PAN, Kraków
 ^b Uniwersytet Jagielloński, Kraków
 ^c University of Bergen, Bergen

based on: [arXiv:1911.05463]

Jet Production(1/3)

Cross section = PDF1(or TMD1)*PDF2(TMD2) *hard cross section *fragmentation of jet1 *fragmentation of jet2 Here via MINCAS k_1 k_1 q_1 q_1 q_1 q_2 q_2 q_3 q_4 q_1 q_2 q_3 q_4 q_1 q_2 q_3 q_4 q_4 q_4

 P_2

 q_2

Jet Production (2/3)

k_{T} factorization:

$$\frac{d\sigma_{pp}}{dy_1 dy_2 d^2 q_{1T} d^2 q_{2T}} = \int \frac{d^2 k_{1T}}{\pi} \frac{d^2 k_{2T}}{\pi} \frac{1}{16\pi^2 (x_1 x_2 s)^2} \overline{|\mathcal{M}_{g^*g^* \to gg}^{\text{off-shell}}|^2} \\ \times \delta^{(2)} \left(\vec{k}_{1T} + \vec{k}_{2T} - \vec{q}_{1T} - \vec{q}_{2T}\right) \mathcal{F}_g(x_1, k_{1T}^2, \mu_F^2) \mathcal{F}_g(x_2, k_{2T}^2, \mu_F^2)$$

Jet Production (3/3)

Factorization for AA collisions:

Processes in Jets

Our results: combination of scattering and induced radiation processes!

BDMPS-Z

BDIM Equation

[Blaizot, Dominguez, Iancu, Mehtar-Tani: JHEP 1406 (2014) 075]

Generalizes BDMPS-Z approach Includes transverse momentum broadening

For gluon-jets:

$$\frac{\partial}{\partial t}D(x,\boldsymbol{k},t) = \frac{1}{t^*} \int_0^1 dz \mathcal{K}(z) \left[\frac{1}{z^2} \sqrt{\frac{z}{x}} D\left(\frac{x}{z},\frac{\boldsymbol{k}}{z},t\right) \theta(z-x) - \frac{z}{\sqrt{x}} D(x,\boldsymbol{k},t)\right] + \int \frac{d^2\boldsymbol{q}}{(2\pi)^2} C(\boldsymbol{q}) D(x,\boldsymbol{k}-\boldsymbol{q},t)$$

Induced Radiation:

 $\mathcal{K}(z) = \frac{(1-z+z^2)^{\frac{3}{2}}}{[z(1-z)]^{\frac{3}{2}}}$

 $\frac{1}{t^*} = \frac{\alpha_s N_c}{\pi} \sqrt{\frac{\hat{q}}{\omega}} \propto \frac{1}{t_{hr}}$

Scattering:

$$C(\boldsymbol{q}) = w(\boldsymbol{q}) - \delta(\boldsymbol{q}) \int d^2 \boldsymbol{q}' w(\boldsymbol{q}')$$

we use:
$$w({m q}) = {16 \pi^2 \alpha_s^2 N_c n \over {m q}^2 ({m q}^2 + m_D^2)}$$

Rohrmoser

Program: KATIE+MINCAS

- Use KATIE for hard initial collisions:
 - PDFs/TMDs for colliding nucleons
 - Hard collision cross-section (Monte-Carlo simulation)
 - Resulting particles → initial particles of jets

[van Hameren: Comput.Phys.Commun. 224 (2018) 371-380]

- Jets: by MINCAS
 - Monte-Carlo simulation of BDIM equation
 - Time-evolution of jets in medium

[Kutak, Płaczek, Straka: Eur. Phys. J. C79 (2019) no.4, 317]

Medium Model

Bjorken Model: $T(t) = T_0 \left(\frac{t_0}{t}\right)^{\frac{1}{3}}$ T...temperature at time t T_0 ...temperature at time t_0

fixed		free		resulting	
c_q	3.7	t_0	$0.6 \mathrm{fm/c}$	$\langle \hat{q} angle$	$0.54 \text{ GeV}^2/\text{fm}$
c_n	5.228	t_L	$5 \mathrm{fm/c}$	$\langle n \rangle$	0.154 GeV^3
		T_0	$0.4 \mathrm{GeV}$	$\langle m_D \rangle$	$0.684 {\rm GeV}$

From Phenomenology (the JET-Collaboration): $\hat{q}(T) = c_q T^3$

[JET Collaboration, Burke et al.: Phys. Rev.C90(2014) 014909] From HTL:

$$m_D^2 = \left(\frac{N_C}{3} + \frac{N_F}{6}\right)g^2T^2$$

cf. [Laine, Vuorinen: Lect. Notes Phys.925(2016)pp.1–281, 1701.01554]

Bose-Einstein/Fermi-Dirac Distribution

Taylor expansion, lowest order:

$$n(T) = n_q + n_{\bar{q}} + n_g = c_n T^3$$

cf.:[K.C.Zapp, PhD-Thesis, Heidelberg U., 2008]

 $\mathsf{R}_{\mathsf{A}\mathsf{A}}$

$k_{\scriptscriptstyle T}$ Distribution

k_⊤ broadening in dijets

For comparison with full equation: add ${m k}$ selected from Gaussian! width: $\sigma^2 \sim \hat q L$

Azimuthal Decorrelations

Azimuthal Decorrelations

Asymmetry A_i

Summary

- MINCAS: jet evolution based on coherent emission and scattering
- Combination with KATIE: allows for calculation of jet-observables
- Results differ from pure Gaussian broadening...
- ...e.g.: in angular correlations of di-jets,
- But p_T distributions seem to be invariant (so far)

Outlook

- to account for quarks
- to study more forward processes

Back-up slides

Azimuthal Decorrelations (ratio)

