Precision electroweak measurements with the CMS detector

V. Ciulli

University and INFN Florence on behalf of CMS

> XXVI Cracow EPIPHANY Conference

> > 7-10 January 2020

Outline of the talk

- CMS detector and data taking
- EW processes at the LHC
- Drell-Yan measurements
- EW production of Wjj
- Multiboson production
- Vector Boson Scattering

Selection of most recent results: not a comprehensive overview of all EW measurements of CMS

CMS detector and data taking

Compact Muon Solenoid

CMS detector and data taking

CMS Integrated Luminosity Delivered, pp

Overall ~200 fb⁻¹ of data in Run I and II of which 160 fb⁻¹ at 13 TeV A total of 300 fb⁻¹ expected after Run III (2021-2024)

CMS detector and data taking

CMS Integrated Luminosity Delivered, pp

Overall ~200 fb⁻¹ of data in Run I and II of which 160 fb⁻¹ at 13 TeV A total of 300 fb⁻¹ expected after Run III (2021-2024)

EW processes at the LHC

CMS of participation

At least a weak boson, measurements up to three (including photons)

EW processes at the LHC

Cross-sections span over 9 orders of magnitude

To first order at LHC, W and Z are generated by a valence quark and a sea anti-At first order, W and Z Parton fractions are 10⁻³<
production at the LHC proceeds through the collision of a valence quark to a sea anti-quark (O~100

To first order at LHC, W and Z are generated by a valence quark and a sea anti-Cart first order, W and Z Parton fractions are 10⁻³<x<10⁻¹, so sea-sea contributions are also important production/zatest free nustation gluon pdf! proceeds through the

collision of a valence quark

to a sea anti-quark (M~100

To first order at LHC, W and Z are generated by a valence quark and a sea anti-Mark Drift Order, W and Z Parton fractions are 10⁻³<×<10⁻¹, so <u>sea-sea contributions are also important</u> production//Zaitstheenistation gluon pdf! EW processes allow precision measurements of fundamental parameters ploge decoupling outgrastine surements will depend on PDFs collision of a valence quark to a sea anti-quark (O~100

Drell-Yan m_{ee} differential cross-section

- Distribution of $m_{\ell\ell}$ measured in the range 15-3000 GeV
- Leading muon (electron): p_T > 22 (30) GeV, lηl < 2.4 (2.5)</p>
- ► Trailing lepton: p_T > 10 GeV
- Resolution effects and QED FSR are unfolded
- Then cross-section is obtained by correcting for acceptance A and $\Rightarrow \sigma_i = \frac{N_i}{A \epsilon \mathcal{L}}$ efficiency ε

SMP-17-001 JHEP 12 (2019) 059

Drell-Yan m_{ee} differential cross-section

Results for 13 TeV based on 2015 dataset of 2.8 fb⁻¹

ee and $\mu\mu$ combined after unfolding FSR effects ("dressed leptons")

Acceptance is the largest uncertainty at low mass while statistical \approx systematics at high mass Excellent agreement with predictions from FEWZ (QCD NNLO + EW NLO)

 $+A_4\cos\theta^* + A_5\sin^2\theta^*\sin(2\phi^*) + A_6\sin(2\theta^*)\sin\phi^* + A_7\sin\theta^*\sin\phi^* \Big|.$

AFB IN ITY AVAILS and SIN² HW Angular, $A_{FB} = \frac{3}{8}A_4 = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}/\gamma \rightarrow \ell^+\ell^ \frac{d\sigma}{d(\cos\theta^*)} \propto 1 + \cos^2\theta^* + A_4\cos\theta^*$

The asymmetry $A_{\rm FB} = \frac{3}{8}A_4 = \frac{\sigma_{\rm F} - \sigma_{\rm B}}{\sigma_{\rm F} + \sigma_{\rm B}}$ is due to the

interference of vector and axial currents $\Rightarrow sin^2\theta_W$

Collins-Soper frame

Direction of incoming quark determined from the boost

- quarks are mainly originated from valence quarks and tend to have larger x than antiquarks
- dilution of asymmetry with a strong dependence on the di-lepton rapidity

A_{FB} in DY events and $sin^2\theta_W$

EPJC 78 (2018) 701

SMP-16-007

Measurement done differential in $m_{\ell\ell}$ and $y_{\ell\ell}$

- $sin^2\theta_W$ sensitivity mainly at Z peak
- PDF constrained from A_{FB} value above/below

Results for full 8 TeV dataset: 18.8 fb⁻¹

AFB in DY events and sin²θw SMP-16-007 EPJC 78 (2018) 701

 $\sin^2 \theta_{\text{eff}}^{\ell} = 0.23101 \pm 0.00036 \,(\text{stat}) \pm 0.00018 \,(\text{syst}) \pm 0.00016 \,(\text{theo}) \pm 0.00031 \,(\text{PDF})$

In future can help disentangle LEP/SLD tension!

AFB in DY events and sin² θ_{eff}^{ℓ} SMP-16-007 Fotal Stat. Juncer SMP-16-007 EPJC 78 (2018) 70 Stat. $sin^{2} \theta_{eff}^{\ell} = 0.23101 \pm 0.00036 (stat) \pm 0.00018 (syst) \pm 0.00016 (theo) \pm 0.00031 (PDF) 32$ 32

In future can help disentangle LEP/SLD tension! (including new ATLAS preliminary result)

Differential Z production cross-section

Results given for fiducial cross-section (2016 data 35.9 fb⁻¹):

SMP-17-010 JHEP 12 (2019) 061

- leptons $p_T > 25$ GeV and $|\eta| < 2.4$
- ► Im_{ℓℓ} 91.2 GeVI < 15 GeV</p>
- both ee and $\mu\mu$ channel selected
- ► background ~1%
- Iargest syst. from lumi = 2.5%

Cross section	$\sigma \mathcal{B} [pb]$
$\sigma_{Z \to \mu \mu}$	$694\pm 6\mathrm{(syst)}\pm 17\mathrm{(lumi)}$
$\sigma_{\mathrm{Z} ightarrow \mathrm{ee}}$	$712\pm10(\mathrm{syst})\pm18(\mathrm{lumi})$
$\sigma_{\mathrm{Z} ightarrow \ell \ell}$	$699\pm5(\mathrm{syst})\pm17(\mathrm{lumi})$

FEWZ predicted (NNLO): $\sigma_{Z \rightarrow ll} = 719 \pm 8 \text{ pb}$

Differential Z production cross-section

SMP-17-010

 $p_T^{\ell\ell}$ distribution compared with predictions from:

- PS MC: aMC@NLO (Z+0,1,2 jet NLO), POWHEG, MiNLO (Z+0,1 jet NLO)
- Resummed calculations: PB TMD (NLL+ NLO), Resbos (NNLL+NLO), Geneva (NNLL+NNLO)
- NNLO fixed order (for $p_T \ell \ell > 32 \text{ GeV}$): **ZjNNLO (Z+1 jet), FEWZ**

Overall good agreement with data within the uncertainties:

- b discrepancies at high p_T for POWHEG, RESBOS, PB TMD (missing higher order Z+jets)
- Z+1 jet NNLO fixed order significantly reduces the scale uncertainties at high pT^{ff}

EW production of Wjj

- select µ(e) + missing momentum, 2 jets with p_T > 50/30 GeV, m_{jj} > 200 GeV and an event p_T balance < 0.2
- Train BDT using m_{jj}, Δη_{jj}, z*, quark-gluon likelihood
- fsig = 2 % → 43% for BDT' > 2.185 (BDT>0.95)

 $\sigma(EW \ell v jj) = 6.23 \pm 0.12(stat) \pm 0.61(syst)$ pb, signal strength $\mu = 0.91 \pm 0.10$

EW production of Wjj

SMP-17-011 arXiv:1903.04040

Hadronic activity in the rapidity gap studied in the signal region BDT > 0.95

- sensitive to the treatment of the colour flow
- ► Herwig in good agreement down to jet p_T ~ 10 GeV
- clear disagreement between Pythia and data (now fixed by "dipole recoil" option)

Multiboson production and VBS

Cross-sections are several order of magnitude smaller

Ζ

 γ

Measurements provide a powerful test of SM and an indirect search for new physics

- new phenomena can induce changes in TGCs/QGC
- ► enhanced cross-sections, especially at large boson p_T
- anomalous couplings usually interpreted in terms of coefficients for dim-6 and dim-8 operators in the framework of effective field theory (EFT):

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{O}_i + \sum_{j} \frac{f_j}{\Lambda^4} \mathcal{O}_j + \cdots$$

dim 6 dim 8

Multiboson production at 13 TeV

Many very recent results!

	Production mode	Final state	Dataset (13 TeV)	Documents
Diboson	WZ	IIIv	35.9/fb	JHEP 04 (2019) 122
	ZZ	IIII IIII + jets	101.2/fb 35.9/fb	CMS PAS SMP-19-001 PLB 789 (2019) 19
	WW/WZ	l∨jj	35.9/fb	JHEP 12 (2019) 062
Triboson	WWW	III, SS II+jj	35.9/fb	PRD 100 (2019) 012004
VBS	WW	SS II	35.9/fb	PRL 120 (2018) 081801
	WZ	IIIv	35.9/fb	PLB 795 (2019)
	ZZ		35.9/fb	PLB 774 (2017) 682
	WW/WZ/ZZ	l∨jj, Iljj	35.9/fb	PLB 798 (2019)134985
	Ζγ	llγ	35.9/fb	CMS PAS SMP-18-007

Diboson production: $ZZ \rightarrow 4\ell$

Among first measurements with full Run 2

- ► this measurement 2017+2018: 101.2 fb-1
- combined with 2016: 35.9 fb-1

Systematic uncertainties driven by lepton efficiencies and luminosity

 correlations of the uncertainty across time are important

SMP-19-001

Diboson production: WZ $\rightarrow 3\ell v$

- only multiboson process directly sensitive to WWZ coupling
- Imits on aTGC obtained from M(WZ) distribution

$$\delta \mathcal{L}_{AC} = \frac{c_{WWW}}{\Lambda^2} \operatorname{Tr}[W_{\mu\nu}W^{\nu\rho}W^{\mu}_{\rho}] + \frac{c_W}{\Lambda^2} \left(D_{\mu}H\right)^{\dagger} W^{\mu\nu} \left(D_{\nu}H\right) + \frac{c_b}{\Lambda^2} \left(D_{\mu}H\right)^{\dagger} B^{\mu\nu} \left(D_{\nu}H\right)$$

Parameter	95% CI (expected) $[\text{TeV}^{-2}]$	95% CI (observed) [TeV ⁻²]
$c_{\rm W}/\Lambda^2$	[-3.3, 2.0]	[-4.1, 1.1]
$c_{ m WWW}/\Lambda^2$	[-1.8, 1.9]	[-2.0, 2.1]
$c_{\rm b}/\Lambda^2$	[-130, 170]	[-100, 160]

total cross-section

$$\sigma_{\rm tot}(\rm pp \to WZ) = 48.09^{+2.98}_{-2.78} \ \rm pb$$

- uncertainty dominated by lepton efficiencies
- result in agreement with MATRIX NNLO predictions

$$\sigma_{\rm NNLO}(\rm pp \to WZ) = 49.98^{+2.2\%}_{-2.0\%}$$

SMP-18-002

JHEP 04 (2019) 122

SMP-18-008 JHEP 12 (2019) 062

WWW

SMP-17-013 PRD 100 (2019) 012004

Iook for 2SS leptons or 3 leptons

result: σ(pp → W[±]W[±]W[∓]) =

- ► SM expectation: 0.509 0.010 PU
- signal strenght: $\mu = 0.34^{+0.62}_{-0.34}$
- significance: 0.6(obs) 1.78 (exp)
- upper limit: 0.78 pb (obs) 0.60 pb (exp)

Vector Boson Scattering: same sign W±W±

SMP-17-004 PRL 120, 081801 (2018)

Largest ratio of EWK to QCD production compared to other VBS processes

small background because of same sign leptons (mainly non prompt and WZ)

- significance: 5.5σ (obs.) 5.7σ (exp.)
- $\sigma_{fid} = 3.83 \pm 0.66(stat) \pm 0.35(syst) \ fb$
- $\sigma_{pred} = 4.25 \pm 0.27 (scale + PDF) fb$

First observation of VBS!

Vector Boson Scattering: WZ

QCD background

SMP-18-001 PLB 795 (2019) 281

Large QCD WZ background

- EW+QCD cross-section measured in a tight fiducial region
- Fit EW on 2D distribution of m_{jj} and Δη_{jj}

- EW+QCD result (tight region): $\sigma_{WZjj}^{fid} = 3.18^{+0.57}_{-0.52} (\text{stat})^{+0.43}_{-0.36} (\text{syst}) \text{ fb}$
- ▶ predicted: $3.27^{+0.39}_{-0.32}$ (scale) ± 0.15 (PDF) fb [EW only: $1.25^{+0.11}_{-0.09}$ (scale) ± 0.06 (PDF) fb]
- 2D fit yields:

$$u_{\rm EW} = 0.82^{+0.51}_{-0.43}$$

• significance of EW: 2.2σ (obs.) 2.5σ (exp.)

Vector Boson Scattering: WV and ZV

SMP-18-006

PLB 798 (2019)134985

WV $\rightarrow \ell \nu$ or ZV $\rightarrow \ell \ell + a$ jet

 $p_T^{jet} > 200 \text{ GeV} + \text{tight dijet selection and centrality of W/Z}$

Signal region: 65 GeV $< m_V < 105$ GeV

Large background from V+jets

Not sensitive to SM yet but sets most stringent limits on EFT operators

CMS 35.9 fb⁻¹ (13 TeV) May 2019 CMS 10⁶ Events Channel ∫ *L*dt √s Limits V + jets Observed 10⁵ [-3.8e+01, 4.0e+01] 19.4 fb 8 TeV ss WW Top quark QCD WV $f_{s,0} / \Lambda^4$ **10**⁴ н 35.9 fb 13 Te\ ss WW [-7.7e+00, 7.7e+00] SM EW WV Bkg. uncertainty 10³ wz [-2.6e+01, 2.8e+01] 35.9 fb 13 TeV $f_{T2}/\Lambda^4 = -0.5 \text{ TeV}^{-4}$ $m_{H^{\pm\pm}} = 1000 \text{ GeV}, s_{\mu} = 0.5$ 10² н WV ZV [-2.7e+00, 2.7e+00] 35.9 fb 13 TeV 10 [-1.2e+02, 1.2e+02 19.4 fb 8 TeV ww aa $f_{S,1} / \Lambda^4$ ********* ss WW [-2.2e+01, 2.2e+01] 35.9 fb 13 TeV 10⁻¹ [-4.1e+01, 4.3e+01] 35.9 fb 13 TeV wz **10** 2 Obs/Exp Н [-3.4e+00, 3.4e+00] 35.9 fb 13 Te\ WV ZV 5 1.5 -2000 200 400 aQGC Limits @95% C.L. [TeV⁻⁴] 0.5 1000 1500 2000 2500 m_{wv} (GeV) 29

VBS: final states with neutral bosons

- ► ZZjj: $\sigma_{\rm EW}^{\rm fid} = 0.40^{+0.21}_{-0.16}$ (stat) $^{+0.13}_{-0.09}$ (syst) fb $\mu_{EW} = 1.39^{+0.86}_{-0.65}$
 - significance: 2.7σ (obs.) 1.6σ (exp.)
- $Z\gamma jj$: $\sigma_{EW}^{fid} = 3.20 \pm 0.07 \text{ (lumi)} \pm 1.00 \text{ (stat)} \pm 0.57 \text{ (syst) fb}$ $\mu_{EW} = 0.64^{+0.23}_{-0.21}$
 - significance: 4.7σ (obs.) 5.5σ (exp.) [Run1+2016]

VBS: final states with neutral bosons

- ► ZZjj: $\sigma_{\rm EW}^{\rm fid} = 0.40^{+0.21}_{-0.16}$ (stat) $^{+0.13}_{-0.09}$ (syst) fb $\mu_{EW} = 1.39^{+0.86}_{-0.65}$
 - significance: 2.7σ (obs.) 1.6σ (exp.)
- $Z\gamma jj$: $\sigma_{EW}^{fid} = 3.20 \pm 0.07 \text{ (lumi)} \pm 1.00 \text{ (stat)} \pm 0.57 \text{ (syst) fb}$ $\mu_{EW} = 0.64^{+0.23}_{-0.21}$
 - significance: 4.7σ (obs.) 5.5σ (exp.) [Run1+2016]

Summary

LHC not only a discovery machine: it can provide precision measurements So far no disagreement found with theory over 9 order of magnitude More results to come using full Run2 and (in future) Run3: stay tuned!

Summary

LHC not only a discovery machine: it can provide precision measurements So far no disagreement found with theory over 9 order of magnitude More results to come using full Run2 and (in future) Run3: stay tuned!

Backup slides

CMS detector reference system

Drell-Yan $m_{\ell\ell}$ differential cross-section

A_{FB} in DY events and sin²θ_W

SMP-16-007 EPJC 78 (2018) 701

PDF are constrained using Bayesian χ² reweighting

Differential Z production cross-section

$Z ightarrow \mu \mu$ (%)	$Z \rightarrow ee (\%)$
2.5	2.5
0.4	—
0.7	
0.1	
	0.9
	1.0
	0.2
0.1	0.1
0.8	1.4
	$\begin{array}{c} Z \to \mu \mu \ (\%) \\ 2.5 \\ 0.4 \\ 0.7 \\ 0.1 \\ - \\ - \\ 0.1 \\ 0.8 \end{array}$

SMP-17-010 JHEP 12 (2019) 061

Vector Boson Scattering: WZ

Diboson production: WW/WZ $\rightarrow \ell v + jet$

Contour of EFT parameters

Vector Boson Scattering: ZZ

EW- and QCD-induced production separated using a BDT

Vector Boson Scattering: Ζγ

Fit EW on 2D distribution of mjj and njj

	muon channel	electron channel
Nonprompt photon	47.6 ± 4.5	39.3 ± 4.0
Other background	7.4 ± 1.4	2.7 ± 0.8
QCD Ζγjj	62.9 ± 3.1	49.6 ± 2.7
EW Z <i>γ</i> jj	36.5 ± 0.7	25.4 ± 0.6
Total background	117.9 ± 5.6	91.6 ± 4.8
Data	172 ± 13	113 ± 11

EFT: limits on 6-dim operators

Dibosons cross-sections

VBS cross-sections

