University of Sussex

High-precision for high-energy tails

Jonas M. Lindert

UK Research and Innovation

XXVI Cracow EPIPHANY Conference LHC Physics: Standard Model and Beyond Cracow 7. January 2020

Remarkable data vs. theory agreement in SM+Higgs measurements

➡Precision tests of the SM at the quantum level

BSM certainly not 'around the corner'

ATLAS SUSY Searches* - 95% CL Lower Limits

Mass scale [TeV]

*Only a selection of the available mass limits on new states or
phenomena is shown. Many of the limits are based on
interaction is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

> Mgluino > 2 TeV Msquark > 0.7-2 TeV Mstop > 400 GeV …

ATLAS Preliminary Γ Γ

 $Z' > 4.5$ TeV $W > 5 TeV$ Mleptoquark > 1 TeV …

Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included)

Quaryjow of CMC EVO roculto

January 2019

 17.5

Timescale of the LHC

Experimental uncertainties will dramatically decrease in the future. Often reaching O(1%).

Differential SM measurements

→very good control on large irreducible SM backgrounds necessary! compatible α distribution with α is a 500 GeV is also scaled (with α e ort backgrounds necessal ihla SM

The need for precision in tails: **Direct searches**

The need for precision in tails: **Direct searches**

→very good control on large irreducible SM backgrounds necessary!

The need for precision in tails: Indirect searches

- many effective BSM operators yield growth with energy \rightarrow expect small deviations in tails of distributions:
- → very good control on SM predictions necessary!

The need for precision in tails: **Indirect searches** \bigcup *pT* L $\overline{}$ ct

REMOVE DEGENERACY

 $~$

 $r = 1 + h\alpha$ object: Q \overline{C} I $\overline{T}h$
the Γ $\frac{1}{4}$ *DEGENERACY* \mathcal{L} $\overline{}$ →Theory precision opens the door to the high H-pT laboratory!

Determine V+jets backgrounds: the DM case

- hardly any systematics (just QED dressing)
- very precise at low pT
- but: limited statistics at large pT

global fit of $Z(\rightarrow \overline{\mathsf{II}})$ +jets, $\mathsf{W}(\rightarrow \overline{\mathsf{W}})$ +jets and γ +jets

- to determine $Z(\rightarrow \nabla v)$ +jet
- and the visible channels at high-pT

- fairly large data samples at large pT
- systematics from transfer factors: ratios of V+jets processes

¹³⁸ where the QCD contribution should contain at least the LO QCD part of *O*(↵↵S) **and CCD uncertainties** *DML* et. al.: 17 QCD uncertainties

 2111010α your surfactor α factor α associated with vector α this is a 'good' scale for V+jets

- at large pTV: $HT'/2 \approx pTV$
- modest higher-order corrections
- 4 sufficient convergence

$$
\frac{d}{dx}\sigma_{\text{QCD}}^{(V)} = \frac{d}{dx}\sigma_{\text{LO QCD}}^{(V)} + \frac{d}{dx}\sigma_{\text{NLO QCD}}^{(V)} + \frac{d}{dx}\sigma_{\text{NNLO QCD}}^{(V)}
$$

$$
\mu_0 = \frac{1}{2} \left(\sqrt{p_{\text{T},\ell^+\ell^-}^2 + m_{\ell^+\ell^-}^2} + \sum_{i \in \{q,g,\gamma\}} |p_{\text{T},i}| \right)
$$

scale uncertainties due to 7-pt variations:

 O(20%) uncertainties at LO O(10%) uncertainties at NLO O(5%) uncertainties at NNLO

with minor shape variations

How to correlate these uncertainties across processes?

11

[JML et. al.: 1705.04664]

• take scale uncertainties as fully correlated: NLO QCD uncertainties cancel at the \leq 1 % level

QCD uncertainties: ratios

QCD uncertainties: ratios

- take scale uncertainties as fully correlated: NLO QCD uncertainties cancel at the \leq 1 % level
- →effectively degrades precision of last calculated order • introduce process correlation uncertainty based on K-factor difference:

$$
\delta K_{\rm NLO} = K_{\rm NLO}^V - K_{\rm NLO}^Z
$$

QCD uncertainties: ratios

- take scale uncertainties as fully correlated: NLO QCD uncertainties cancel at the \leq 1 % level
- →effectively degrades precision of last calculated order • introduce process correlation uncertainty based on K-factor difference:

check against NNLO QCD!

$$
\delta K_{\rm NLO} = K_{\rm NLO}^V - K_{\rm NLO}^Z
$$

QCD uncertainties: ratios

- take scale uncertainties as fully correlated: NLO QCD uncertainties cancel at the \leq 1 % level
- →effectively degrades precision of last calculated order

• introduce process correlation uncertainty based on K-factor difference: $\delta K_{(N)NLO} = K_{(N)NLO}^V - K_{(N)NLO}^Z$

Uncertainty estimates at NNLO QCD

EW uncertainties

EW corrections become sizeable at large $p_{T,V}$: -30% $@$ l TeV

How to estimate corresponding pure EW $\sqrt{2\pi\sqrt{2}}$ uncertainties of relative $\mathcal{O}(\alpha^2)$? ; WILCE CANTUES OF FEIALIVE

Origin: virtual EW Sudakov logarithms

distributions (up to O(1) at the TeV scale)

Large EW corrections dominated by Sudakov logs

17

[JML et. al.: 1705.04664]

check against two-loop Sudakov²⁰⁰ 100 gs" $p_{\mathsf{T}}^{\mathsf{cut}}~[\mathsf{GeV}]$ 200 400 600 800 1000 1200 1400 1600 1800 2000 -0.50

1
[Kühn, Kulesza, Pozzorini, Schulze; 05-07] IKühn Kulesza Pozzorini Schulze: 05-071 Denner, Fadin, Jantzen, K¨uhn, Lipatov, Manohar, Melles, Penin, Pozzorini, Smirnov, . . .]

Pure EW uncertainties \overline{a}

 $p_{T,V}$ [GeV]

$$
\kappa_{\text{NLO EW}}(\hat{s}, \hat{t}) = \frac{\alpha}{\pi} \left[\delta_{\text{hard}}^{(1)} + \delta_{\text{Sud}}^{(1)} \right] + \text{ac}
$$
\n
$$
\kappa_{\text{NNLO Sud}}(\hat{s}, \hat{t}) = \left(\frac{\alpha}{\pi} \right)^2 \delta_{\text{Sud}}^{(2)} + \text{bc}
$$

+ additional uncertainties for hard non-log NNLO EW effects

(uncorrelated)

18

[JML et. al.: 1705.04664]

Large EW corrections dominated by Sudakov logs arge FW corrections dominated by

NNLO SUDAKOV approx. ' +5% at 1 TeV at
. ' +5% at 1 TeV at

Precise predictions for V+jet DM backgrounds $\overline{1}$ Todo (later): extending introduction: extending introduction: $\overline{1}$ *•* review of NLO EW literature: [1–4]

d dx d $\mathrm{d}\bar{y}$ $\frac{d}{\vec{y}}\,\sigma^{(V)}$ $(\vec{\varepsilon}_{\mathrm{MC}}, \vec{\varepsilon}_{\mathrm{TH}}) := \frac{\mathrm{d}}{\mathrm{d}\varepsilon}$ (~"MC*,* ~"TH) := ^d d₋ d $\sigma^{(V)}$ $\left\langle V\right\rangle$ \rightarrow \rightarrow \rightarrow

 $\frac{d}{dx}$ ^{*o*}TH \overline{dx} ^{*o*} QCD \overline{dx} ^{*o*} mix \overline{dx} $\overline{dx$ dx in dx are dx and dx from dx from dx from dx in dx d dx $\sigma_{\text{TH}}^{(V)}=% {\textstyle\sum\nolimits_{\alpha}} e_{\alpha}^{(V)}\frac{\partial f_{\alpha}}{\partial\beta}g_{\alpha}^{\dag}\gamma_{\alpha} \label{eq:3.24}%$ d dx $\sigma_{\rm QCD}^{(V)}$ + with $\frac{d}{dx}\sigma_{TH}^{(V)} = \frac{d}{dx}\sigma_{QCD}^{(V)} + \frac{d}{dx}\sigma_{mix}^{(V)} + \frac{d}{dx}\Delta\sigma_{EW}^{(V)} + \frac{d}{dx}\sigma_{\gamma-ind}^{(V)}$

(*V* = *, Z,W[±]*

- d~*y* and *incertainty estimates includ* ibı • Robust uncertainty estimates including \bullet Process • Robust uncertainty estimates including • Prescription for correlation of thes
- $\overline{}$ $\overline{\$ 1.Pure QCD uncertainties
	- 2. Pure EW uncertainties $\mathbf{16} \cdot \mathbf{16}$
- ⁵⁹ which should be understood as 1 Gaussian uncertainties. 3. Mixed QCD-EW uncertainties ¹⁷² *pp* ! *V* + jet at a centre-of-mass energy of 13 TeV. The input parameters, as well
- $\overline{}$ $\overline{4}$ PD ⁵⁸ "min*,k <* "*^k <* "max*,k,* (2) 4. PDF, y-induced uncertainties

GeV-TeV range) • Combination of state-of-the-art predictions: (N)NLO $OCD+(N)N$ to match (future) experimental sensitivities (T-T0% accuracy in the few hu \log ⁴⁴ scribes the one-dimensional reweighting of MC samples for *V* + jet production $\frac{1}{2}$ the respective uncertainties in a systematic way. The following formula definition $\frac{1}{2}$ be directly compared to the corresponding result directly calculated from (*^V*)

$$
\frac{d}{dx} \frac{d}{dy} \sigma^{(V)}(\vec{\varepsilon}_{MC}, \vec{\varepsilon}_{TH}) := \frac{d}{dx} \frac{d}{dy} \sigma^{(V)}_{MC}(\vec{\varepsilon}_{MC}) \left[\frac{\frac{d}{dx} \sigma^{(V)}_{TH}(\vec{\varepsilon}_{TH})}{\frac{d}{dx} \sigma^{(V)}_{MC}(\vec{\varepsilon}_{MC})} \right]
$$
\none-dimensional reweighting of MC samples in $x = p_T^{(V)}$
\nwith
$$
\frac{d}{dx} \sigma^{(V)}_{TH} = \frac{d}{dx} \sigma^{(V)}_{QCD} + \frac{d}{dx} \sigma^{(V)}_{mix} + \frac{d}{dx} \Delta \sigma^{(V)}_{EW} + \frac{d}{dx} \sigma^{(V)}_{\gamma - ind.}
$$

- **estimates including Prescription for correlation of these** *<u>resistion</u>* for correlation nty estimates including values of Prescription for correlation of these uncertainties
- ⁵⁵ through nuisance parameters ~"TH*,* ~"MC. Our recommendations for theory un-The community of the relations of the relations of the relationship of the relationship of the relations, relati $uncertainties \longrightarrow \text{within a process (between low-pT and high-pT)}$
- **2. Pure EVV uncertainties** b across processes

work in collaboration with: ⁻
Add work in collaboration with:
R. Boughezal, I.M. Cambell, A. Denner, S. Dittmaier, A. Huss, A. Gehrm $\frac{1}{4}$ *R. Boughezal, J.M. Campell, A. Denner, S. Dittmaier, A. Huss, A. Gehrmann-De Ridder, T. Gehrmann, N. Glover, S. Kallweit, M. L. Mangano, P. Maierhöfer, T.A. Morgan, A. Mück, M. Schönherr, F. Petriello, S. Pozzorini, G. P. Salam, C.Williams*

[1705.04664]

• Combination of state-of-the-art predictions: (N)NLO QCD+(N)NLO EW in order to match (future) experimental sensitivities (1-10% accuracy in the few hundred

19

Diboson Status $Dibacen$ $Stathve$

NNLO QCD + NLO EW for dibosons: pTV2

-
- mall at large pTV2
few percent
|TeV
| ‣NNLO/NLO QCD very small at large pTV2
	-
	-

LHC.)
DEIFII, IVI. VVIESEITIGRII, 191 [M. Grazzini, S. Kallweit, JML, S. Pozzorini, M. Wiesemann; 1912.00068]

NNLO QCD + NLO EW for dibosons: pTV2 channels and the loop-induced *gg* contribution are treated in an additive way. In analogy with eq. (2.8), the prescription (2.13) can be rewritten as LO EW for dibosons: pTV2

DHIII, /VI. VVIESEMUNII, 1912.OOOOOJ
.

-
-
- QCD uncertainty: few percent **K-factors, the case of giant** *K***-factors**
- $T_A V$ $t_{\text{LO}} = (50 - 60)\%$ @ I TeV

\n- • moderate QCD corrections
\n- • NNLO/NLO QCD very small at large pTV2
\n- • NNLO QCD uncertainty: few percent
\n- • NLO EW/LO=-(50-60)%
$$
Q
$$
 I TeV
\n- 1 $\sigma_{\text{NNLO QCD+EW}} = d\sigma_{\text{LO}} \left(1 + \delta_{\text{QCD}} + \delta_{\text{EW}}\right) + d\sigma_{\text{LO}}^{gg}$ \n $d\sigma_{\text{NNLO QCD+EW}} = d\sigma_{\text{LO}} \left(1 + \delta_{\text{QCD}}\right) \left(1 + \delta_{\text{EW}}\right) + d\sigma_{\text{LO}}^{gg}$ \n $= d\sigma_{\text{NNLO QCD+EW}} + d\sigma_{\text{LO}} \delta_{\text{QCD}} \delta_{\text{EW}}$ \n
\n- • difference very conservative upper bound on $\mathcal{O}(\alpha_S \alpha)$ \n
\n- • multiplicative/factorised combination clearly superior (EW Sudakov logs × soft QCD)
\n- • dominant uncertainty at large pTV2: $\mathcal{O}(\alpha^2) \sim \alpha_w^2 \log^4(Q^2/M_W^2)$ \n
\n

•difference very **conservative upper bound on** $\mathcal{O}(\alpha_S \alpha)$ $\mathcal{O}(\alpha_S \alpha)$ the dominant source of $\mathcal{O}(\alpha_S \alpha)$ effects and $\mathcal{O}(\alpha_S \alpha)$

• dominant uncertainty at large pTV2: $\mathcal{O}(\alpha^2) \sim \alpha_{\mathrm{w}}^2 \log^4(Q^2/M_W^2)$ $\frac{1}{\text{NLO QCD} + \text{EW}}$ and $\frac{1}{\text{NLO QCD} \times \text{EW}}$ and $\frac{1}{\text{NLO QCD}}$ instance, $\frac{1}{\text{NLO Q$ • multiplicative/factorised combination clearly superior (EW Sudakov logs x soft QCD) • dominant uncertainty at large pTV2: $\mathcal{O}(\alpha^2) \sim \alpha_{\mathrm{w}}^2 \log^4(Q^2/M_W^2)$ $\binom{2}{W}$ were also when the included in the inclusion of the inclusion of the inclusion of the inclusion of the inclusion ϵ (EW Sudakov logs \times soft QCD)

•NLO QCD/LO=2-5! ("giant K-factor" [Rubin, Salam, Sapeta, '10]) e

Giant QCD K-factors and EW corrections: pTV1

Figure 5. Generic *pp* ! *VVj* topologies and kinematic regions that give rise to giant *K*-factors in the dNNLO QCD = dLO Giant QCD K-factors and EW corrections: pTV1

-
-

-
-
-
-
- dNNLO QCD⇥EW = dNNLO QCD+EW + dLOQCD EW *.* (2.8)

Figure 5. Generic *pp* ! *VVj* topologies and kinematic regions that give rise to giant *K*-factors in the dNNLO QCD = dLO Giant QCD K-factors and EW corrections: pTV1

-
-

-
-
-
-
- dNNLO QCD⇥EW = dNNLO QCD+EW + dLOQCD EW *.* (2.8)

Giant QCD K-factors and EW corrections: pTV1

➡check!

Giant K-factors and effect of jet veto \sim the following we assume that bosons are nearly on-shell. Moreover, we focus only only we focus on the shell.

$$
H_T^{\text{lep}} \text{ corresponds to}
$$
\n
$$
= \frac{2}{3} p_{\text{T},V_1} \qquad \text{for} \quad \xi_{\text{veto}} = 0.2
$$
\n
$$
\text{tangological}
$$

- ‣ There is no clear scale/signature for new physics effects: Let's explore the unknown leaving no stone unturned!
- ▶ Tails, tails, tails…!!
- ‣ State-of-the art NNLO QCD+NLO EW allows to control important kinematic distributions at the few percent level up to the multi TeV regime.

‣ Let's push the precision frontier!

Conclusions

With the discovery of the Higgs the SM is 'complete'

Standard Model of Elementary Particles

EW vacuum stability Dark Matter GUT unification Neutrino masses Hierarchy problem

The motivation for BSM searches are as compelling as ever

inclusive V: MEPS@NLO QCD+EWvirt

- merging ensures stable results (dijet topology at LO)
- compensation between negative Sudakov and LO mix

[S. Kallweit, JML, P. Maierhöfer, M. Schönherr, S. Pozzorini, '14+'15]

- ‣ Bases on Sherpa's standard MEPS@NLO
- ‣ Stable NLO QCD+EW predictions in all of the phase-space…
- ‣ …including Parton-Shower effects.
- ‣ Can directly be used by the experimental collaborations
- ▶ PT.V: MEPS@NLO QCD+EW in agreement with QCDxEW (fixed-order)

 \blacktriangleright p_{T, jl}:

QCD uncertainties \sim 298 and computed values, \sim

$$
\frac{d}{dx}\sigma_{N^{k}LO QCD}^{(V)}(\vec{\epsilon}_{QCD}) = \left[K_{N^{k}LO}^{(V)}(x) + \sum_{i=1}^{3} \epsilon_{QCD,i} \delta^{(i)} K_{N^{k}LO}^{(V)}(x)\right] \times \frac{d}{dx}\sigma_{LO QCD}^{(V)}(\vec{\mu}_{0}).
$$
\n
$$
\times \frac{d}{dx}\sigma_{LO QCD}^{(V)}(\vec{\mu}_{0}).
$$
\n
$$
\epsilon_{QCD,i}^{(Z)} = \epsilon_{QCD,i}^{(W^{\pm})} = \epsilon_{QCD,i}^{(\gamma)} = \epsilon_{QCD,i}^{(\gamma
$$

$$
\bullet\left[\begin{array}{c} \delta^{(3)}K_{\rm N^kLO}^V=\frac{K_{\rm N^kLO}^V}{K_{\rm N^k-1LO}^V}-\frac{K_{\rm N^kLO}^Z}{K_{\rm N^k-1LO}^Z}\end{array}\right]
$$

(correlated)

Difference of (N)NLO corrections as **process correlation uncertainty**

(important for extrapolation from low-pT to high-pT)

Mixed QCD-EW uncertainties ^T ⁼ *^p*T*,*^W ⁺^X *k* NLO QCD = LO + NLO QCD*,* NLO

 E_{α} the following section of \mathcal{L}_{α} and \mathcal{L}_{α} is \mathcal{L}_{α} . \mathcal{L}_{α} is an \mathcal{L}_{α} in \mathcal{L}_{α} TOT QUITIIII
Corresponds to the ratios to the ratios of the ratios o NLO CONTRACTORES should be exact! For dominant Sudakov EW logarithms factorization

$\begin{array}{c|c|c|c|c} \hline \end{array}$ *M* $\begin{array}{c} \hline \end{array$ Multiplicative combination

 $\sigma_{\text{QCD} \times \text{EW}}^{\text{NLO}} = \sigma_{\text{QCD} \times \text{EW}}^{\text{NLO}} = \sigma_{\text{QCD}}^{\text{NLO}} \left(1 + \frac{\delta \sigma_{\text{EW}}^{\text{NLO}}}{\sigma_{\text{LO}}} \right)$ $\sigma_{\textrm{QCD} \times \textrm{EW}}^{\textrm{NLO}} = \sigma_{\textrm{QCD}}^{\textrm{NLO}}$ $\left(1+\frac{\delta \sigma_{\rm EW}^{\rm NLO}}{_{\rm LO}}\right)$ EW $\sigma^{\rm LO}$ ◆ $\sigma_{\rm QCD\times EW} = \sigma_0$

 $\begin{array}{c}\n\hline\n\text{1} & \text{1} & \text{1} \\
\hline\n\end{array}\n\quad \text{(try to capture some } \mathcal{O}(\alpha \alpha_s) \text{ contributions,}$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \mathcal{A} \\ \end{array} \end{array} \end{array}$ $\begin{array}{c} \begin{array}{c} \mathcal{A} \\ \end{array} \end{array}$ $\begin{array}{c} \mathcal{C} \\ \end{array}$ $\begin{array}{c} \mathcal{C} \\ \end{array}$ $\begin{array}{c} \mathcal{C} \\ \end{array}$ $\begin{array}{c} \mathcal{C} \\ \end{array}$ (try to capture some $\mathcal{O}(\alpha \alpha_s)$ contributions, e.g. EW Sudakov logs × soft QCD) pluit suit
Didente ⌘ 0.8 $\overline{1}$ r
)

> CONDITIONS

> LOCOMETRISTIC SECTIONS, indicates size of missing mixed EW-QCD ✓ 1 + NLO en ነe = NLO \overline{a} $\overline{\bigcap}$ **NUMBER 2018** Difference between these two approaches $\frac{1}{\frac{1}{\sqrt{2}}}$ corrections. Difference between these two approximately displace to the solution of missing mixed EVA

 ${\rm K_{QCD}}_{\otimes {\rm EW}} - {\rm K_{QCD}}_{\oplus {\rm EW}} \sim 10\%$ at LIEV sufficients we expect the setting formulations ${\rm K_{QCD}}_{\otimes {\rm EW}} - {\rm K_{QCD}}_{\oplus {\rm EW}} \sim 10\%$ $-K_{\rm QCD\oplus E}$ \overline{X} $\sim 10\%$ $\mathbf{U}_{\mathbf{v}}$ $K_{\rm QCD\otimes EW}-K_{\rm QCD\oplus EW}\sim 10\%$ at $1\,\text{TeV}$

show conservative!! Too conservative!?

 $C_{N,0}$ \cap \cap and E_{N} compations, are obtained also mixed QCD -EVV uncertainties of relative $U(\alpha \alpha_s)$
have to be sensidered M and C and D is the sense of relative $O(\alpha \alpha_s)$ and and nave to be considered.
Expansion of *n* Given QCD and EW corrections are sizeable, also have to be considered. \overline{C} and \overline{C}

respectively. As Additive combination

 $\sigma^{\rm NLO}_{\rm QCD+EW} \, = \, \sigma^{\rm LO} + \delta \sigma^{\rm NLO}_{\rm QCD} + \delta \sigma^{\rm NLO}_{\rm EW} \, ,$ be included and photon-induced mixed and photon-induced terms of *O*(\overline{C} P₁ \overline{C} ¹ \overline{C} $\frac{1}{\sqrt{2}}$ $\sigma_{\rm QCD+EW}^{\rm NED} = \sigma^{20} + o \sigma_{\rm QCD}^{\rm NED} + o \sigma_{\rm EW}^{\rm NED}$ $\sigma^{\text{NLO}}_{\text{QCD + FUV}} = \sigma^{\text{LC}}$ $\pm W$ $\Delta \Gamma$ σ

Mixed QCD-EW uncertainties

Consider real $\mathcal{O}(\alpha \alpha_s)$ correction to V+jet = EW correction to *V* + 2 jets \simeq \simeq **NLO EW to V+2jets O** EW to V+2iets = EW correction to *V* + 2 jets

and we observe

 $d\sigma_{\text{NL}}$ *V* +2jet de *V* + 1jeto v + 1je $\rm{d\sigma_{NLO\ EW\ \vert}}$ $\mathrm{d}\sigma_\mathrm{LO}$ $\begin{array}{c} \hline \end{array}$ $|_{V+2\text{jet}}$ $-\frac{d\sigma_{\text{NLO EW}}}{d\sigma_{\text{LO}}}$ $\mathrm{d}\sigma_{\mathrm{LO}}$ $\overline{}$ \vert $|V+1$ jet $\lesssim 1\%$

 $\frac{1}{2}$ strong support for rig support for

extending the W combination of the W combination of the W combination of the W combination of the W combination

The Support for the W combination of the W combination of the W combination of the W combina strong support for

- factorization
- multiplicative QCD x EW combination

 $200 \cup 10V$ $pT_{j,2}$ > 30 GeV

Mixed QCD-EW uncertainties relative EW correction factors (*^V*) procedure is implemented using an *N*-jettiness cut parameter community of the dimensionless than \mathcal{S} .

N-jettiness cut ensures approx. constant ratio V+2jets/V+jet $\tau_1 = \sum$ $\int \frac{2p_i \cdot q_k}{\cdot}$ \mathcal{L}

$$
k = \sum_{k} \min_{i} \left\{ \frac{2\pi i}{Q_i} \frac{q_k}{\sqrt{\hat{s}}} \right\}
$$

Estimate of non-factorising contributions

(tuned to cover above difference of EW K-factors) to the above difference of LVV K-rations)