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What is unfolding
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Unfolding is the process of correcting measured data to its
detector efficiency, acceptance and resolution.
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What is unfolding
——

Unfolding is the process of correcting measured data to its
detector efficiency, acceptance and resolution.
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Unfolding is the process of correcting measured data to its
detector efficiency, acceptance and resolution.
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What is unfolding
——

Unfolding is the process of correcting measured data to its
detector efficiency, acceptance and resolution.

1
p==-M"'-n-(D-B)

€

Pa rt|cIe M,grat,on ‘Detector
matrix ‘
M -1

\ e Acceptance /
correctior - -+

23




What is unfolding 24
——

Methods of RooUnfold package:

Invert
TUnfold

Svd

Ids

BinByBin
IterativeBayes

Maybe one day FBU - Fully Bayesian with regularization
https://arxiv.org/abs/1201.4612
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https://arxiv.org/abs/1201.4612

Fully Bayesian Unfolding

Bayesien theorem: P(A|B) =

(TD, M) = L(D|T, M)-

ANEB

P(B|A)-P(A)

P(B)
(T, M)
Norm. Const.

AnpB

P{A|B} = P(AnB)/P(B)

P{B|A} = P(BnA}/P{A)
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Fully Bayesian Unfolding - Likelihood Function 26

Likelihood function L(Ty,T%,...,TN).

P(T|D) « L(D|T) n(T)=

A | =

n=bins n=bins [ (D —By)] )
( H (Z]:l[ (]g'L]TY)B )]' e_(z;_l_—lblnsMijT]’)> e—TS(T)
a;(D; — Bj)]!
=1
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Fully Bayesian Unfolding - Sampling

Markov chain Monte Carlo (MCMC)
- general name for sampling algorithms — each step is derived
based on previous one, which creates chain.

Gibbs Sampling - Bayesian inference Using Gibbs Sampling
Random Walk Metropolis Hastings

Adaptive Metropolis Hastings

Hamiltonian Monte Carlo

No-U-Turn Sampler - NUTS
https://arxiv.org/abs/1111.4246

Metropolis-adjusted Langevin Algorithm (MALA)
Hessian-Hamiltonian Monte Carlo (H2MC)

Stein Variational Gradient Descent (SVGD)

Nested Sampling with RadFriends (RadFriends-NS)
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https://arxiv.org/abs/1111.4246

Fully Bayesian Unfolding - Sampling

Hamiltonian Monte Carlo (HMC)

- problem of sampling likelihood function is transformed to
the free particle (frog) motion in the potential given by
likelihood function V = L(Ty, Ts, ..., Tn).

P
H %+V(1’,y,z,...)

P>
H=—+ L(Tl, T, ...,TN>
2m
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Motion of the frog in the N-dimensional space

—

Likelihood function L(x,y)
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Motion of the frog in the
—

Paths in bin 1

N-dimensional space

Paths in bin 2

e 52

Paths in bin 4

30




Posteriors

—

Unfolded spectrum is derived from posteriors which are
calculated for each bin 7 as:

p(@iD) = [ [ PADT T Ty (2)

Posteroir in bin 1, Reg. par. = 0.000000 Posteroir in bin 2, Reg. par. = 0.000000
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Posteriors

—

Unfolded spectrum is derived from posteriors which are
calculated for each bin 7 as:

p(@iD) = [ [ PADT T Ty (3)

HadTopPt spectrum, no regularization used
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Bin Correlations

—

Unfolded spectrum is derived from posteriors which are
calculated for each bin 7 as:

p(TID) = [ [ PID)ATs . dTiosds.cTy

Bin Correlations
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Regularization 34

—

P(T|\D) o« L(D|IT) -«n(T)=

€

1 (n:bins (Zn:bins MijT'j)[o‘i(Di_Bi)] -

H j:l[ (D B)]' e ( ;L;bms MijTj)> e*‘rS(T)
=1

N—

—_

S(T) = Z (A — A1) (5)
t=2
where
Atl,tz = Ttl - th (6)

where T” and T" are first and second derivatives of the truth

pseudo experiment. @



Regularization

—

Unfolded Spectra, Reg. using curvature, = 2.000000

Unfolded Spectra, Req. using curvature, = 0,000000

1 + t +
- X2/NDF = 6.623513¢-03 1.4 E-X2INDF = 6.247286-03

Wlddssllithl,
Unlolded  Paricle

£ o =0 B

(a) (b)

Figure: a) No regularization is applied. b) Regularization using
curvature with reg. strengt 7 = 2.0.
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Regularization

—

X2 using Curvature Regularization
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Stops 100000
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X? using Entropy Regularization
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Regularization

—

Relative x?

X2 using Curvature Regularization
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Conclusion

—

1.) Fully Bayesian unfolding provides whole probability
distribution.
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Conclusion

—

Thank to my supervisor Mgr. Jiti Kvita, PhD. , organisers for
the opportunity to give this talk and for your attention.
Questions?
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Back-up

€ =

Pparticle, proj. from M

o Ddata, proj. from M

)
leevel

D

(7)
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Migration matrix

—

Unfolded spectrum is derived from posteriors which are
calculated for each bin 7 as:

p(TID) = [ [ PID)ATs . dTiosds.cTy

Normalized Unfolding Matrix, Reg. par. = 0.000000
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More Bins

—

Events

Unfolded / Particle
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More Bins 46

—

Normalized Unfolding Matrix, Reg. par. = 0.000000
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More Bins

—

Bin Correlations
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