Fully Bayesian Unfolding

Mgr. Petr Baroň Palacký University Olomouc

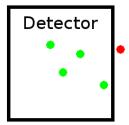
- 1.) What is unfolding
- 2.) Fully Bayesian Unfolding
- 3.) Regularization
- 4.) Conclusion

Detector

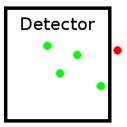
Particle level Detector level

Detector

Particle level Detector level



Particle level Detector level



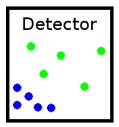
Efficiency = 80%

Detector

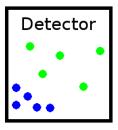
Particle level Detector level

Detector

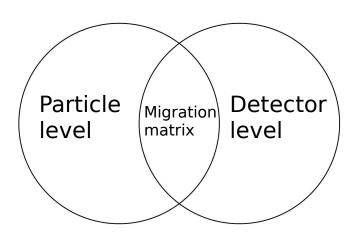
Particle level Detector level

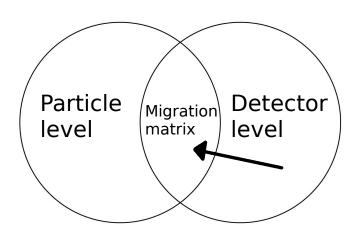


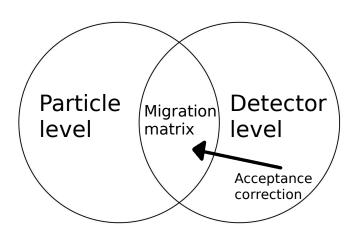
Particle level Detector level

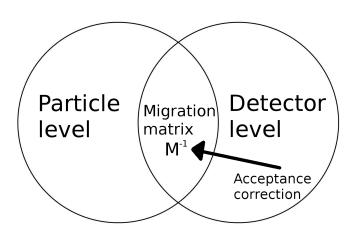


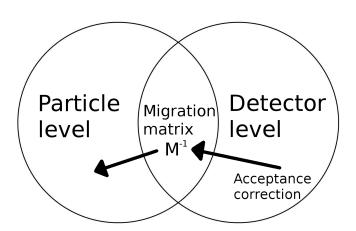
Acceptance = 50%

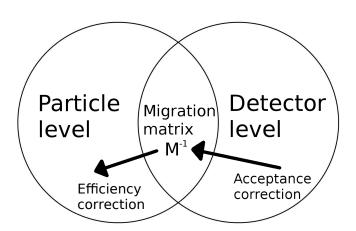


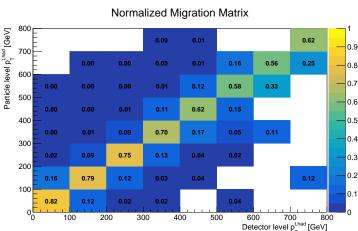


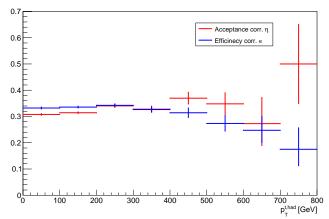


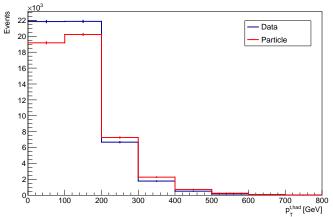


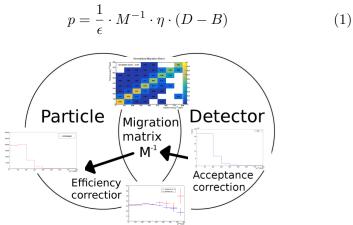












Methods of RooUnfold package:

Invert

TUnfold

Svd

Ids

BinByBin

IterativeBayes

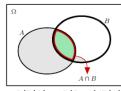
Maybe one day FBU - **Fully Bayesian** with regularization https://arxiv.org/abs/1201.4612

Bayesien theorem:
$$P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$$

 $p(\mathbf{T}|\mathbf{D}, \mathcal{M}) = L(\mathbf{D}|\mathbf{T}, \mathcal{M}) \cdot \frac{\pi(\mathbf{T}, \mathcal{M})}{\text{Norm. Const.}}$



 $P(A|B) = P(A \cap B)/P(B)$



 \propto

 $P(B|A) = P(B \cap A)/P(A)$

Likelihood function $L(T_1, T_2, ..., T_N)$.

$$P(T|D) \propto L(D|T) \cdot \pi(T) =$$

$$= \frac{1}{\epsilon} \left(\prod_{i=1}^{n=bins} \frac{(\sum_{j=1}^{n=bins} M_{ij} T_j)^{[\alpha_i(D_i - B_i)]}}{[\alpha_i(D_i - B_i)]!} e^{-(\sum_{j=1}^{n=bins} M_{ij} T_j)} \right) e^{-\tau S(T)}$$

Markov chain Monte Carlo (MCMC)

- general name for sampling algorithms \to each step is derived based on previous one, which creates chain.

Gibbs Sampling - Bayesian inference Using Gibbs Sampling Random Walk Metropolis Hastings

Adaptive Metropolis Hastings

Hamiltonian Monte Carlo

No-U-Turn Sampler - NUTS

https://arxiv.org/abs/1111.4246

Metropolis-adjusted Langevin Algorithm (MALA)

Hessian-Hamiltonian Monte Carlo (H2MC)

Stein Variational Gradient Descent (SVGD)

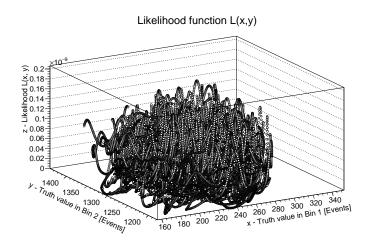
Nested Sampling with RadFriends (RadFriends-NS)

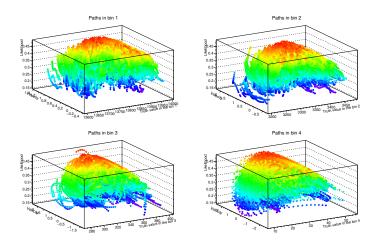
Hamiltonian Monte Carlo (HMC)

- problem of sampling likelihood function is **transformed** to the free particle (frog) motion in the potential given by likelihood function $V = L(T_1, T_2, ..., T_N)$.

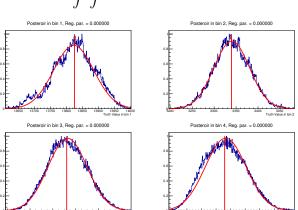
$$H = \frac{\vec{p}^2}{2m} + V(x, y, z, ...)$$

$$H = \frac{\vec{p}^2}{2m} + L(T_1, T_2, ..., T_N)$$

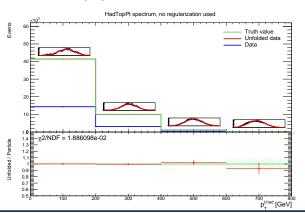




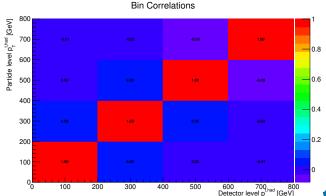
$$p_i(T_i|D) = \int \int P(T|D)dT_1...dT_{i-1}dT_{i+1}...dT_N$$
 (2)



$$p_i(T_i|D) = \int \int P(T|D)dT_1...dT_{i-1}dT_{i+1}...dT_N$$
 (3)



$$p_i(T_i|D) = \int \int P(T|D)dT_1...dT_{i-1}dT_{i+1}...dT_N$$
 (4)



$$P(T|D) \propto L(D|T) \cdot \pi(T) =$$

$$= \frac{1}{\epsilon} \left(\prod_{i=1}^{n=bins} \frac{(\sum_{j=1}^{n=bins} M_{ij} T_j)^{[\alpha_i(D_i - B_i)]}}{[\alpha_i(D_i - B_i)]!} e^{-(\sum_{j=1}^{n=bins} M_{ij} T_j)} \right) e^{-\tau S(T)}$$

$$S(T) = \sum_{t=2}^{N-1} (\Delta_{t+1,t} - \Delta_{t,t-1})^2$$
 (5)

where

$$\Delta_{t_1, t_2} = T_{t_1} - T_{t_2} \tag{6}$$

where T' and T'' are first and second derivatives of the truth pseudo experiment.

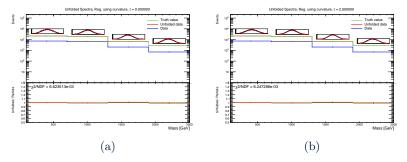
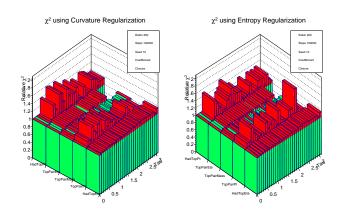
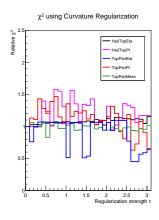
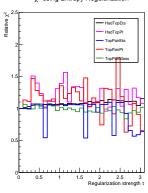


Figure: a) No regularization is applied. b) Regularization using curvature with reg. strengt $\tau = 2.0$.





χ² using Entropy Regularization



1.) Fully Bayesian unfolding provides whole probability distribution.

- 1.) Fully Bayesian unfolding provides whole probability distribution.
- 2.) More CPU.

- 1.) Fully Bayesian unfolding provides whole probability distribution.
- 2.) More CPU.
- 3.) Regularization is on stage of testing.

- 1.) Fully Bayesian unfolding provides whole probability distribution.
- 2.) More CPU.
- 3.) Regularization is on stage of testing.

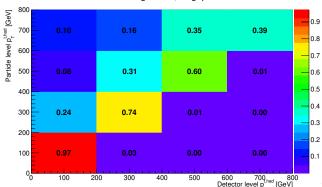
Thank to my supervisor Mgr. Jiří Kvita, PhD. , organisers for the opportunity to give this talk and for your attention. Questions?

$$\epsilon = \frac{P_{\text{particle, proj. from M}}}{P_{\text{level}}}; \ \eta = \frac{D_{\text{data, proj. from M}}}{D}$$

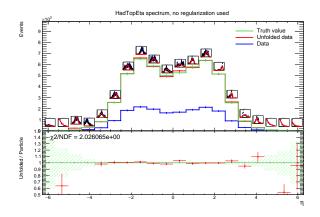
(7)

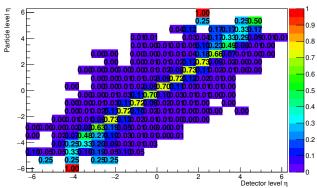
$$p_i(T_i|D) = \int \int P(T|D)dT_1...dT_{i-1}dT_{i+1}...dT_N$$
 (8)

Normalized Unfolding Matrix, Reg. par. = 0.000000



More Bins 45





More Bins

