

Epiphany 2020, Cracow

Soureek Mitra (Karlsruhe Institute of Technology) on behalf of the CMS and ATLAS collaboration

- Heaviest known elementary particle Sensitive to EWSB mechanism and vacuum stability through radiative corrections
- At LHC, top quarks are produced \rightarrow predominantly in pairs (tt) via strong interaction ($\approx 10 \text{ Hz} @ 13 \text{ TeV}$) \rightarrow alternatively, singly through electroweak interaction ($\approx 1 \text{ Hz} @ 13 \text{ TeV}$)
- Unique behavior : Decays ($\tau_{decay} \approx 10^{-25}$ s) before hadronization ($\tau_{had.} \approx 10^{-24}$ s) \bigcirc Access to bare quark properties such as spin-polarization
- Allows test of pQCD at NLO or NNLO precision (fixed-order)
- Constrains proton PDFs, strong coupling, top-quark pole mass \bigcirc
- Allows access to CKM element $|V_{tb}|$ via tWb vertex at production and decay in the electroweak production mode
- Window to New Physics via anomalous or EFT couplings 0
- Constitutes dominant background to multiple BSM resonance searches

This talk focuses mostly on my picks from all the latest results using Run2 (13 TeV) data

Introduction

Epiphany 2020, Cracow

Top pair measurements

Inclusive σ_{tt} measurements

- scale, PDF and the strong coupling
- events with OS $e\mu$ pair + 1 or 2 b-tagged jets

- Dominant systematics:

Epiphany 2020, Cracow

Cross-section ratios

- → attributed to lower gluon density at high Bjorken-x for ABM12LHC compared to other PDFs

Epiphany 2020, Cracow

Charge asymmetry at LHC

- Production of top quark pairs charge symmetric at LO
- No charge asymmetry in $gg \rightarrow t\bar{t}$ at all orders, dilutes measurable asymmetry
- Small charge asymmetry at NLO due to QCD qq⁻ annihilation allowed in SM
 - \rightarrow interference between tree and box diagram
 - ➤ interference between gluon ISR and FSR diagrams
- (anti-)top quarks are emitted preferentially in the direction of the \bigcirc incoming (anti-)parton
- No preferential direction for the incoming (anti-)partons at LHC
- High momenta valence quarks collide with sea anti-quarks carrying lower momenta \rightarrow More forward top quarks and more central anti-top quarks

$$A_{C} = \frac{N(\Delta |y| > 0) - N(\Delta |y| < 0)}{N(\Delta |y| > 0) + N(\Delta |y| < 0)}, \Delta |y| = |y_{t}| - \frac{N(\Delta |y| > 0) + N(\Delta |y| < 0)}{N(\Delta |y| > 0) + N(\Delta |y| < 0)}$$

• New Physics models can enhance $A_c \rightarrow$ indirect search for new physics

$-|y_{\overline{t}}|$

Epiphany 2020, Cracow

Evidence of charge asymmetry

- Measurement using full Run 2 data (139 fb⁻¹)
- Measurement in the I+jets (e and μ) channels with resolved & boosted topologies
- Results unfolded to parton level
- \bigcirc A_c measured inclusively and differentially (in bins of $m_{tt} \& \beta_{z,tt}$
- Evidence of charge asymmetry at the level of 4 s.d. consistent with SM prediction with accuracy NNLO QCD + NLO EW
- A_C sensitive to 7 four-fermion operators in the Warsaw basis \rightarrow eventually reduced to 2 by assuming flavor universality

$$C_{u}^{1} = C_{qq}^{(8,1)} + C_{qq}^{(8,3)} + C_{ut}^{(8)}$$

$$C_{u}^{2} = C_{qu}^{(1)} + C_{qt}^{(1)}$$

$$C_{d}^{1} = C_{qq}^{(8,1)} - C_{qq}^{(8,3)} + C_{dt}^{(8)}$$

$$C_{d}^{2} = C_{qd}^{(1)} + C_{qt}^{(1)}$$

$$C_{d}^{2} = C_{qd}^{2} = C_{d}^{2}$$

$$C_{u}^{2} = C_{d}^{2} = C^{2}$$

$$0.00$$

 $^{\circ}$ Tighter bound on C^{\cdot} than the combination of previous measurements

Events 0^{1} 10¹⁰ 10^{9} 10° 10⁵ 10³ 10² 1.05 Data/Pred. 0.95 <[°]0.014′ 0.012 0.01

ATLAS-CONF-2019-026

Epiphany 2020, Cracow

Forward - Backward asymmetry

- The first LHC measurement of A_{FB} using 35.9 fb⁻¹ data collected during 2016
- Measurement in the $I(e,\mu)$ + jets channels with resolved & boosted topologies
- qq⁻ initiated process at NLO is isolated using m_{tt} , x_F and c^*
- \bigcirc qq⁻ \rightarrow tt⁻ diff. cross-section Inear combination of symmetric and asymmetric components → further expanded as a function of anom. chromomagnetic (μ) and chromoelectric (d) dipole moments and A_{FB}
- Template-based likelihood fits using differential models based on extensions to tree-level cross sections for qq⁻ and gg initial states

$\alpha_{s} \& m_{t}^{pole}$ from differential cross-section

Triple differential cross-section measured in bins of M(tt⁻), |y(tt⁻)| and N_{jet} with 35.9 fb⁻¹ data

Event selection:

→ OS dilepton (ee+ $\mu\mu$ +e μ)

→ \geq 2 jets (\geq 1 b-tagged)

→ N_{jet} additional jets not from tt⁻ decay ($\Delta R > 0.4$ from leptons and b-quarks)

➤ Loose kinematic reconstruction of tt⁻ system (no m_t constraints)

- α_S and m_t^{pole} extracted from comparison to fixed-order
 NLO predictions
- Simulataneous $\alpha_{\rm S}$, $m_{\rm t}^{\rm pole}$ and PDF fit yields

 $\alpha_{S}(m_{Z}) = 0.1135 \pm 0.0016 \,(\text{fit})^{+0.0002}_{-0.0004} \,(\text{model})^{+0.0008}_{-0.0001} \,(\text{param})^{+0.0011}_{-0.0005} \,(\text{scale})$ $= 0.1135^{+0.0021}_{-0.0017}$

 $m_t^{\text{pole}} = 170.5 \pm 0.7 \text{ (fit)} \pm 0.1 \text{ (model)}_{-0.1}^{+0.0} \text{ (param)} \pm 0.3 \text{ (scale)} \text{ GeV}$ = 170.5 ± 0.8 GeV (0.47%)

- First measurement of the top mass running with 35.9 fb⁻¹ data
- Require 1 OS eµ pair $+ \ge 2$ jets
- Kinematic reco. of the tt system with m_W and m_T^{MC} constraints
- Diff. cross-section at parton level obtained using ML fit to multidifferential distributions (m_{tt} , m_{lb} ^{min}, p_T of softest jet)
- 4 σ_{tt} values obtained as a function of the scale μ in 4 m_{tt} bins
- $m_t(\mu)$ in MSbar scheme is determined for each bin independently
- Following 3 ratios extracted in order to reduce systematics

 $m_t(\mu_3) \quad m_t(\mu_4)$ $m_t(\mu_2) \, (m_t(\mu_2)) \,$ $m_t(\mu_2)$

Observed evolution agrees with RGE prediction at 1-loop precision within 1.1 s.d

Running of m_t

arXiv:1909.09193 CMS $d\sigma_{t\bar{t}} / dm_{t\bar{t}} \Delta m_{t\bar{t}}$ [pb] 350 Data unfolded to parton level 300 NLO predictions in MS scheme 250 $\mu_r = \mu_f = m_t(m_f)$ 200 ABMP16_5_nlo PDF set **---**----- $m_t(m_i) = 162 \text{ GeV}$ 150 $m_{t}(m) = 164 \text{ GeV}$ $m_t(m_1) = 166 \text{ GeV}$ 100 50 200 400 1000 1200 1400 1600 1800 2000 600 800 RGE in $\overline{\text{MS}}$ scheme : $\mu^2 \frac{dm(\mu)}{d\mu^2} = -\gamma(\alpha_S(\mu)) m(\mu)$ CMS $m_t(\mu) / m_t(\mu_{ref})$ |.05⊢ ABMP16_5_nlo PDF set $\mu_{ref} = 476 \text{ GeV}$ $\mu_0 = \mu_{ref}$ 0.95 0.9 NLO extraction from differential σ_{r} Reference scale μ_{m} One-loop RGE, n = 5, $\alpha_{s}(m) = 0.1191$ 0.85

Epiphany 2020, Cracow

800

500

400

600

700

900

m_t in lepton+jets with soft-µ

- Analysis with 36.1 fb⁻¹ data
- Selection:

 \rightarrow 1 e/μ + \geq 4 jets

 $\rightarrow \geq 2$ b-tagged jets, one with displaced vertex tag, one with soft Muon tag (μ_S)

 $\rightarrow \Delta R(\ell, \mu_S) < 2$ (good for boosted jets)

- SS and OS have different contributions but both depend on m_t
- $m(\ell \mu_S)$ distribution used in a binned template fit to extract the mass \rightarrow largely reduced sensitivity to JES, JER

 $m_t = 174.48 \pm 0.40 \,(\text{stat}) \pm 0.67 \,(\text{syst}) \,\text{GeV} = 174.48 \pm 0.78 \,\text{GeV} \,(0.45\%)$

- Dominant systematics:
 - → HF-hadron decay model: 0.39 GeV (0.22%)
 - → Pile up : 0.20 GeV (0.11%)
 - → b-quark hadronization : 0.19 GeV (0.11%)

- Direct measurement of top quark decay width in dilepton channel with full Run 2 data (139 fb⁻¹)
- MC templates obtained by reweighing nominal tt sample ($\Gamma_t = 1.32 \text{ GeV}$)
- Profile likelihood fit to
 - \rightarrow m_{lb} template in eµ channel (high stat.)
 - \rightarrow m_{bb⁻} template in ee+µµ channel (control region)

Measured value in agreement with SM prediction within uncertainties

Top Width

ATLAS-CONF-2019-038

	$m_t = 172 \text{ GeV}$		$m_t = 172.5 \text{ GeV}$		$m_t = 173$	
	Mean [GeV]	Unc. [GeV]	Mean [GeV]	Unc. [GeV]	Mean [GeV]	J
Measured	2.01	+0.53 -0.50	1.94	+0.52 -0.49	1.90	
Theory	1.306	< 1%	1.322	< 1%	1.333	
$ = 9_{\mu} + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + $						

Single top measurements

Inclusive single top-quark cross-section measurements

√s	σ _{t-ch.} (NLO)	σ _{tW} (approx. NNLO)	$\sigma_{ m s-ch.}$ (N
7 TeV	63.9 ^{+2.9} _{-2.5} pb (4.5%)	15.7 ± 1.2 pb (7.6%)	$4.3 \pm 0.2 \text{pb}$
8 TeV	84.7 $^{+3.8}_{-3.2}$ pb (4.4%)	$22.4 \pm 1.5 \text{pb} (6.7\%)$	$5.2 \pm 0.2 \text{pb}$
13 TeV	$217.0^{+9.0}_{-7.7}$ pb (4.1%)	71.7 ± 3.8 pb (5.3%)	10.3 ± 0.4 pl

Epiphany 2020, Cracow

14

t-channel inclusive and differential measurement @13 TeV

- Different production rate of t and t⁻ due to proton PDF
- Direct sensitivity to $|V_{tb}|$
- Event selection: 1 e or μ and multiple jets
- Events categories depending on jet and b-tag multiplicity
- Likelihood fit to BDT discriminator in all regions simultaneously to extract σ_{t-ch} and R_{t-ch} from data
- Dominant unc. sources: PS scale, PDF, $\mu_{\rm R}$ and $\mu_{\rm F}$ scale
- Unfolded data matched to signal predictions at parton or particle level \rightarrow better agreement with aMC@NLO 4FS

 $\sigma_{t-ch,t} = 130 \pm 1 \text{ (stat)} \pm 19 \text{ (syst) pb} = 130 \pm 19 \text{ pb}$ $\sigma_{t-ch,\bar{t}} = 77 \pm 1 \text{ (stat)} \pm 12 \text{ (syst) pb} = 77 \pm 12 \text{ pb}$ $\sigma_{t-ch,t+\bar{t}} = 207 \pm 2 \text{ (stat)} \pm 31 \text{ (syst) pb} = 207 \pm 31 \text{ pb}$ $|f_{IV}V_{tb}| = \sqrt{\frac{\sigma_{t-ch,t+\bar{t}}}{T}} = 0.98 \pm 0.07 \,(\text{exp}) \pm 0.02 \,(\text{theo})$

$$\int \sigma_{t-ch,t+\overline{t}}^{tneo}$$

$$\pm 1.68 \pm 0.02 \,(\text{stat}) \pm 0.05 \,(\text{syst}) = 1.68 \pm 0.06$$

15

t-channel differential measurement @13 TeV

- *t*-channel allows to measure the spin asymmetry of the top quark
 - → sensitive to BSM couplings
 - → top quark highly polarized along the direction of spectator quark

$$A_{\mu+e} = 0.439 \pm 0.032 \text{ (exp)} \pm 0.053 \text{ (theo)}$$

= 0.439 ± 0.062

$$\frac{1}{\sigma}$$

- Measurement compatible with SM expectation (POWHEG NLO): 0.436
 - deviation observed by CMS at 8 TeV disfavored
- First differential measurement of charge ratio as a function of various observable
- Calculating the ratio of top or anti-top crosssection to total cross-section instead of top to anti-top
- Results agree with prediction from all PDF sets

arXiv:1907.08330 **CMS** $d\sigma/d\cos\theta_{pol}^{*}$ (pb μ^{\pm} / e[±] + jets 25 F Data ($\exists exp, | total$) $\frac{\overrightarrow{p_{q'}^*} \cdot \overrightarrow{p_{\ell}^*}}{|\overrightarrow{p_{q'}^*}| |\overrightarrow{p_{\ell}^*}|}$ $\cos \theta_{pol}^* =$ **POWHEG 4FS** aMC@NLO 4FS aMC@NLO 5FS 10 5 🗖 / Data Pred. 0.8 -0.5 0.5 0

16

Epiphany 2020, Cracow

|V_{tq}| in t-channel

Unconstrained Scenario

 $|V_{tb}| = 1.00 \pm 0.01 \text{ (stat + syst)} \pm 0.03 \text{ (nonprofiled)}$ $|V_{tb}|^2 = 0.99 \pm 0.02 \text{ (stat + syst)} \pm 0.06 \text{ (nonprofiled)}$ $|V_{td}|^2 + |V_{ts}|^2 < 0.17@95\%$ CL

With SM CKM unitarity constraint

 $|V_{tb}| = 0.980^{+0.014}_{-0.011}$ (stat + syst) ± 0.031 (nonprofiled) $|V_{td}|^2 + |V_{ts}|^2 = 0.040^{+0.023}_{-0.028}$ (stat + syst) ± 0.059 (nonprofiled)

CMS-PAS-TOP-17-012

n. b-jets

New

 \bigcirc

Observation of SM tZq process

- Observation of SM tZq with full Run2 data (139 fb⁻¹) by ATLAS
- CMS observation earlier with 77 fb⁻¹ data (2016+2017) with (<u>PRL122(2019) 132003</u>) significance ~ 8 s.d

Events selection: ➤ OR of single electron/muon triggers \rightarrow exactly 3 leptons (1 OSSF pair) & $|m_{\ell\ell} - m_Z| < 10$ GeV → ≥ 2 jets with p_T > 35 GeV and $|\eta| < 4.5$; out of which exactly 1 central ($|\eta| < 2.5$) b-jet

- Separate NN for each signal region (SR) designed using \bigcirc several kinematic variables
- Simultaneous PLH fits to data in SRs and control regions \bigcirc (CRs) to extract $\sigma(t\ell^+\ell^-q)$ → NN in SRs, NN in $tt^{-}Z$ CR, event yield in tt^{-} CR, $m_{T}(\ell, E_{T}^{miss})$ in diboson CR

$$\sigma(t\ell^+\ell^-q) = 98 \pm 12 \text{ (stat)} \pm 8 \text{ (syst) fb} (15\%)$$

$$\sigma_{\text{SM}} = 102^{+5}_{-2} \text{ fb}$$

• Observation with 15% uncertainty \rightarrow dominated by stat. component

Epiphany 2020, Cracow

18

New Physics in tW + tt⁻ production in dilepton final states

receee C_{tG}

- Analysis with 35.9 fb⁻¹ data
- Event Selection: di-lepton (*ee, eµ, µµ*) + jets events → Separated by lepton flavor, $t\bar{t} \ge 2$ jets (2 b-jets), tW : 1-2 jets (0-1 b-jet)
- Signal extraction is performed using channel dependent NN 0
- First experimental bound on C_G coupling \bigcirc
- \bigcirc @95% CLs

Limits on C_{uG} and C_{cG} translated to observed (expected) ULs on FCNC BRs

Summary

- Several results with full or partial Run2 data
- Measurements agree with SM prediction at a given accuracy
- Measurements are performed with unprecedented precision
- Provides good understanding of the various modeling aspects such as PDF, hadronization and parton shower etc.
- Stringent limits on couplings are placed with EFT interpretation
- Need to exploit the full potential of the Run2 data (~140 fb⁻¹)

Back Up

Summary of m_{top} measurements at LHC

ATLAS+CMS Preliminary	m _{top} summary,√s = 7-13 TeV	May 2019
World comb. (Mar 2014) [2]	total stat	
total uncertainty	m _{top} ± total (stat ± syst)	vs Ref.
LHC comb. (Sep 2013) LHCtopWG	$173.29 \pm 0.95 \ \textbf{(0.35 \pm 0.88)}$	7 TeV [1]
World comb. (Mar 2014) ⊢+++	$173.34 \pm 0.76 \ \textbf{(0.36 \pm 0.67)}$	1.96-7 TeV [2]
ATLAS, I+jets	172.33 ± 1.27 (0.75 ± 1.02)	7 TeV [3]
ATLAS, dilepton	173.79 ± 1.41 (0.54 ± 1.30)	7 TeV [3]
ATLAS, all jets	■ 175.1± 1.8 (1.4± 1.2)	7 TeV [4]
ATLAS, single top	$172.2 \pm 2.1 \ (0.7 \pm 2.0)$	8 TeV [5]
ATLAS, dilepton	$172.99 \pm 0.85 \ (0.41 \pm 0.74)$	8 TeV [6]
ATLAS, all jets	173.72 ± 1.15 (0.55 ± 1.01)	8 TeV [7]
ATLAS, I+jets	$172.08 \pm 0.91 \ (0.39 \pm 0.82)$	8 TeV [8]
ATLAS comb. (Oct 2018)	$172.69 \pm 0.48 \ (0.25 \pm 0.41)$	7+8 TeV [8]
CMS, I+jets	$173.49 \pm 1.06 \ (0.43 \pm 0.97)$	7 TeV [9]
CMS, dilepton	$172.50 \pm 1.52 \ (0.43 \pm 1.46)$	7 TeV [10]
CMS, all jets	173.49 ± 1.41 (0.69 ± 1.23)	7 TeV [11]
CMS, I+jets	$172.35 \pm 0.51 \ (0.16 \pm 0.48)$	8 TeV [12]
CMS, dilepton	172.82 ± 1.23 (0.19 ± 1.22)	8 TeV [12]
CMS, all jets	$172.32 \pm 0.64 \ (0.25 \pm 0.59)$	8 TeV [12]
CMS, single top	$172.95 \pm 1.22 \ (0.77 \pm 0.95)$	8 TeV [13]
CMS comb. (Sep 2015) ⊢₩-I	172.44 ± 0.48 (0.13 \pm 0.47)	7+8 TeV [12]
CMS, I+jets	$172.25 \pm 0.63 \ (0.08 \pm 0.62)$	13 TeV [14]
CMS, dilepton	$172.33 \pm 0.70 \ (0.14 \pm 0.69)$	13 TeV [15]
CMS, all jets	$172.34 \pm 0.73 \ (0.20 \pm 0.70)$	13 TeV [16]
	[1] ATLAS-CONF-2013-102 [7] JHEP 09 (2017) 118 [2] arXiv:1403.4427 [8] EPJC 79 (2019) 290 [3] EPJC 75 (2015) 330 [9] JHEP 12 (2012) 105 [4] EPJC 75 (2015) 158 [10] EPJC 72 (2012) 2202 [5] ATLAS-CONF-2014-055 [11] EPJC 74 (2014) 2758 [6] PLB 761 (2016) 350 [12] PRD 93 (2016) 072002	[13] EPJC 77 (2017) 354 [14] EPJC 78 (2018) 891 [15] EPJC 79 (2019) 368 [16] EPJC 79 (2019) 313
165 170 1	75 180	185
		100
r n _{to}		Eni

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCTopWGSummaryPlots

Summary of R_{t-ch}. measurements at LHC

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCTopWGSummaryPlots

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCTopWGSummaryPlots

Summary of FCNC searches at LHC

24

$$\begin{split} N_1 &= L\sigma_{t\bar{t}}\epsilon_{e\mu}2\epsilon_b(1-C_b\epsilon_b) + N_1^{\rm bkg}\\ N_2 &= L\sigma_{t\bar{t}}\epsilon_{e\mu}C_b\epsilon_b^2 + N_2^{\rm bkg} \end{split}$$

- $\epsilon_{e\mu}$ = efficiency for a tt⁻ event to pass the OS selection
- ϵ_b = combined probability for a jet coming from top decay within the and p_T threshold and being b-tagged
- C_b = tagging correlation coefficient ullet

\sqrt{s} values [TeV]	Measured cross-section ratio	NNLO+NNLL predict
13/7	$4.54 \pm 0.08 \pm 0.10 \pm 0.12 \ (0.18)$	4.69 ± 0.16
13/8	$3.42 \pm 0.03 \pm 0.07 \pm 0.10$ (0.12)	3.28 ± 0.08
8/7	$1.33 \pm 0.02 \pm 0.02 \pm 0.04 \ (0.05)$	1.43 ± 0.01

\sqrt{s} value [TeV]	$t\bar{t}/Z$ cross-section ratio	CT14 predict
13	$1.062 \pm 0.009 \pm 0.016 \pm 0.002 \ (0.018)$	$1.132^{+0.078}_{-0.075}$
\sqrt{s} values [TeV]	$t\bar{t}/Z$ cross-section double ratio	
13/7	$2.617 \pm 0.049 \pm 0.060 \pm 0.007 \ (0.078)$	$2.691^{+0.043}_{-0.058}$
13/8	$2.212 \pm 0.024 \pm 0.049 \pm 0.006 \ (0.055)$	$2.124^{+0.026}_{-0.035}$

Epiphany 2020, Cracow

*σ*_{tt}- (eμ)

acceptance, passing the reco. criteria

tion

tion

	Uncertainty source	$\Delta \epsilon_{e\mu} / \epsilon_{e\mu}$	$\Delta G_{e\mu}/G_{e\mu}$	$\Delta C_b/C_b$	$\Delta \sigma_{t\bar{t}}/\sigma_t$
		(%)	(%)	(%)	(%)
	Data statistics				0.44
$t\bar{t}$ mod.	<i>tī</i> generator	0.38	0.05	0.05	0.43
	<i>tt</i> hadronisation	0.24	0.42	0.25	0.49
	Initial/final-state radiation	0.30	0.26	0.16	0.45
	$t\bar{t}$ heavy-flavour production	0.01	0.01	0.26	0.26
	Parton distribution functions	0.44	0.05	-	0.45
	Simulation statistics	0.22	0.15	0.17	0.22
Lept.	Electron energy scale	0.06	0.06	-	0.06
	Electron energy resolution	0.01	0.01	-	0.01
	Electron identification	0.34	0.34	-	0.37
	Electron charge mis-id	0.09	0.09	-	0.10
	Electron isolation	0.22	0.22	-	0.24
	Muon momentum scale	0.03	0.03	-	0.03
	Muon momentum resolution	0.01	0.01	-	0.01
	Muon identification	0.28	0.28	-	0.30
	Muon isolation	0.16	0.16	-	0.18
	Lepton trigger	0.13	0.13	-	0.14
Jet/b	Jet energy scale	0.02	0.02	0.06	0.03
	Jet energy resolution	0.01	0.01	0.04	0.01
	Pileup jet veto	-	-	-	0.02
	<i>b</i> -tagging efficiency	-	-	0.04	0.20
	<i>b</i> -tag mistagging	-	-	0.06	0.06
Bkg.	Single-top cross-section	-	-	-	0.52
	Single-top/tt interference	-	-	-	0.15
	Single-top modelling	-	-	-	0.34
	Z+jets extrapolation	-	-	-	0.09
	Diboson cross-sections	-	-	-	0.02
	Diboson modelling	-	-	-	0.03
	Misidentified leptons	-	-	-	0.43
	Analysis systematics	0.91	0.75	0.44	1.39
$L/E_{\rm b}$	Integrated luminosity	-	-	-	1.90
	Beam energy	-	-	-	0.23
	Total uncertainty	0.91	0.75	0.44	2.40
					1

- mt^{pole} extracted from inclusive tt⁻ cross-section measurement in dilepton final state
- Using 36.1 fb⁻¹ data at 13 TeV \bigcirc
- Selection: \bigcirc
 - → 1 OS $e\mu$ pair
 - ➤ 1 or 2 b-tagged jets

 \rightarrow events with SS eµ pair used to control bkg due to nonprompt leptons

• σ_{tt^-} dependence on m_t^{pole} parametrized as

$$\sigma_{t\bar{t}}^{\text{theo}}(m_t^{\text{pole}}) = \sigma(m_t^{\text{ref}}) \left(\frac{m_t^{\text{ref}}}{m_t^{\text{pole}}}\right)^4 (1 + a_1 x + a_2 x^2) \quad \underline{\mathsf{I}}$$

where
$$x = \frac{m_t^{\text{pole}} - m_t^{\text{ref}}}{m_t^{\text{ref}}}, m_t^{\text{ref}} = 172.5 \,\text{GeV}$$

To

Epiphany 2020, Cracow

m_t^{pole} from σ_{tt^-} (eµ)

)] `
.1
.1
.3
.4
.1

- with several MC generators
- observables

Differential σ_{tt} (eµ)

Epiphany 2020, Cracow

- Analysis with full Run2 data (139 fb⁻¹)
- Event Selection: → 1 lepton (e or μ) + ≥ 4 jets (≥ 1 b-jet)
- PLH fit to different distributions in 3 signal-enriched regions (\geq 4j1b, 4j2b, \geq 5j2b) → small sensitivity to tt⁻ modeling uncertainties
- Systematic sources included as nuisance parameters and constrained in the fit

$$\sigma_{t\bar{t}}(\ell + jets) = 829.7 \pm 0.4 (stat)^{+35.3}_{-34.5} (syst) \, pb (4.6\%)$$

- Similar level of uncertainty obtained in the measured $\sigma_{\rm fid}$
- In agreement with NNLO + NNLL prediction (unc. 5.7%)

σ_{tt} (ℓ + jets)

ATLAS-CONF-2019-044

Dominant uncertainties for A_C and A_{FB} measurements

ATLAS-CONF-2019-026

Source Unc	ertainty in Type	Size	Affects
Jet energy scale $\pm 1a$	$\sigma(p_{\mathrm{T}},\eta,A)$ N & S	5 7.6%	All
Jet energy resolution \pm	$=1\sigma(\eta)$ N & S	3.2%	All
Pileup ±	$1\sigma(n_{\rm PV})$ N & S	5 2.9%	All
Boosted μ +jets trigger eff. ± 1	$1\sigma(p_{\mathrm{T}},\eta)$ N & S	6 0.4%	Type-1/2 μ
Resolved μ +jets trigger eff. ± 1	$1\sigma(p_{\mathrm{T}},\eta)$ N & S	6 0.1%	Type-3 µ+
Boosted e+jets trigger eff. ± 1	$\sigma(p_{\mathrm{T}}, \eta)$ N & S	5 18.6%	Type-1/2 e-
Resolved e+jets trigger eff. ± 1	$1\sigma(p_{\mathrm{T}},\eta)$ N & S	5 2.5%	Type-3 e+j
Muon ident. eff. $\pm 1\sigma($	$p_{\mathrm{T}}, \eta , n_{\mathrm{PV}})$ N & S	6 0.4%	All μ +jet
Muon PF isolation eff. $\pm 1\sigma$ ($p_{\mathrm{T}}, \eta , n_{\mathrm{PV}})$ N & S	6 0.2%	Type-3 μ+
Electron ident. eff. ± 1	$\sigma(p_{\mathrm{T}}, \eta)$ N & S	5 1.0%	All e+jet
b tag eff., b jets (loose) ± 1	$1\sigma(p_{\mathrm{T}},\eta)$ N & S	5 2.5%	Type-1/
b tag eff., c jets (loose) ± 1	$1\sigma(p_{\mathrm{T}},\eta)$ N & S	5 1.2%	Type-1/
b tag eff., light jets (loose) ± 1	$1\sigma(p_{\mathrm{T}},\eta)$ N & S	6.3%	Type-1/
b tag eff., b jets (medium) ± 1	$1\sigma(p_{\mathrm{T}},\eta)$ N & S	5 1.9%	Туре-3
b tag eff., c jets (medium) ± 1	$1\sigma(p_{\mathrm{T}},\eta)$ N & S	6 0.8%	Type-3
b tag eff., light jets (medium) ± 1	$1\sigma(p_{\mathrm{T}},\eta)$ N & S	5 1.2%	Type-3
t tag eff. (merged) \pm	$=1\sigma(p_{\mathrm{T}})$ N & S	5 1.6%	Type-1
t tag eff. (semimerged) \pm	$=1\sigma(p_{\mathrm{T}})$ N & S	5 2.2%	Type-1
t tag eff. (not merged) \pm	$=1\sigma(p_{\mathrm{T}})$ N & S	5 2.8%	Type-1
ISR scale	$\pm 1\sigma$ N & S	5 2.2%	tī
FSR scale	$\pm 1\sigma$ N & S	5 2.6%	tī
ME-PS matching (h_{damp})	$\pm 1\sigma$ N & S	5 2.5%	tī
CUETP8M2T4 tune	$\pm 1\sigma$ N & S	5 2.4%	tī
Color reconnection	$\pm 1\sigma$ S	2.8%	tī
b fragmentation \exists	$\pm 1\sigma(x_{\rm b})$ N & S	3 .7%	tī
b branching fraction	$\pm 1\sigma$ N & S	5 1.0%	tī
Top quark $p_{\rm T}$ reweighting $\pm 1\sigma$	$p_{\rm T}^{\rm gen,t}, p_{\rm T}^{\rm gen,\bar{t}})$ S	2.5%	tī
PDF/α_{S} variation NI	NPDF 3.0 S	1.5%	tī
Renormalization scale $u_{\rm R}$ $\frac{1}{2}u$	$u_{\rm R} \rightarrow 2 \mu_{\rm R}$ S	2.6%	tī
Factorization scale $u_{\rm F}$	$i_{\rm F} \rightarrow 2 \mu_{\rm F}$ S	1.5%	tī
Combined $u_{\rm R}/u_{\rm F}$ scale $\frac{1}{2} \rightarrow 2$	$2(u_{\rm R} \text{ and } u_{\rm E})$ S	3.8%	tī MC
Integrated luminosity	$\pm 2.5\%$ N		All
$R_{\alpha\overline{\alpha}}$	$\pm 1\%$ N & S	5 —	All $f_{\text{op}*}/f$
R_{W+iets}^{22}	±10% N		All W+iets
$R_{\text{opt}}^{t/C/R}$ (20 params total) +	-1σ (stat) N		Multie

ATLAS-CONF-2019-038

Source	Impact on Γ_t [GeV]
Jet reconstruction	± 0.24
Signal and bkg. modelling	± 0.19
MC statistics	± 0.14
Flavour tagging	± 0.13
$E_{\rm T}^{\rm miss}$ reconstruction	± 0.09
Pile-up and luminosity	± 0.09
Electron reconstruction	± 0.07
PDF	± 0.04
$t\bar{t}$ normalisation	± 0.03
Muon reconstruction	± 0.02
Fake-lepton modelling	± 0.01

ATLAS-CONF-2019-046

Source	Unc. on m_t [GeV]	Stat. preci
Data statistics	0.40	
Signal and background model statistics	0.16	
Monte Carlo generator	0.04	
Parton shower and hadronisation	0.07	
Initial-state QCD radiation	0.17	
Parton shower α_S^{FSR}	0.09	
<i>b</i> -quark fragmentation	0.19	
HF-hadron production fractions	0.11	
HF-hadron decay modelling	0.39	
Underlying event	< 0.01	
Colour reconnection	< 0.01	
Choice of PDFs	0.06	
W/Z+jets modelling	0.17	
Single top modelling	0.01	
Fake lepton modelling $(t \to W \to \ell)$	0.06	
Soft muon fake modelling	0.15	
Jet energy scale	0.12	
Soft muon jet p_T calibration	< 0.01	
Jet energy resolution	0.07	
Jet vertex tagger	< 0.01	
b-tagging	0.10	
Leptons	0.12	
Missing transverse momentum modelling	0.15	
Pile-up	0.20	
Luminosity	< 0.01	
Total systematic uncertainty	0.67	
Total uncertainty	0.78	

Comparison between CMS and ATLAS measurements of SM tZq

ATLAS-CONF-2019-043

 $\sigma(t\ell^+\ell^-q) = 98 \pm 12 \,(\text{stat}) \pm 8 \,(\text{syst}) \,\text{fb} \,(15\%)$

Uncertainty source	$\Delta\sigma/\sigma$ [%]	Uncertainty Impact (%)
		Experimental
tZq PDF	4.2	lepton selection 3.2
Prompt lepton background modelling and normalisation	3.4	trigger efficiency 1.4
Non-prompt lepton background modelling and normalisation	2.3	jet energy scale 3.3
$\text{Jets}+E_{\text{T}}^{\text{miss}}$	2.1	b-tagging efficiency 1.7
Luminosity	1.7	nonprompt normalization 4.1
Lepton reconstruction and calibration	1.7	ttZ normalization 1.0
Pile-up	1.2	luminosity 1.7
MC statistics	1.0	pileup 1.9
tZq QCD radiation	0.8	other 1.3
b-tagging	0.4	Theoretical
		final-state radiation 2.0
Total systematic uncertainty	8.0	tZq QCD scale 2.0
Statistical uncertainty	12	$t\bar{t}ZQCD$ scale 1.4

PRL122(2019) 132003

 $\sigma(t\ell^+\ell^-q) = 111 \pm 13 \,(\text{stat})^{+11}_{-9} \,(\text{syst}) \,\text{fb} \,(15\%)$

31

BDT inputs for ATLAS measurement of SM tZq

ATLAS-CONF-2019-043

Variable	Rank		Definiti
	SR 2j1b	SR 3j1b	
$m_{bj_{f}}$	1	1	(Larges
m_{top}	2	2	Reconst
$ \eta(j_f) $	3	3	Absolut
$m_{\rm T}(\ell, E_{\rm T}^{\rm miss})$	4	4	Transve
b-tagging score	5	11	<i>b</i> -taggir
H_{T}	6	—	Scalar s
$q(\ell_W)$	7	8	Electric
$\eta(\ell_W)$	8	12	Absolut
$p_{\rm T}(W)$	9	15	p_{T} of th
$p_{\mathrm{T}}(\ell_W)$	10	14	$p_{\rm T}$ of th
$m(\ell\ell)$	11	_	Mass of
$ \eta(Z) $	12	13	Absolut
$\Delta R(j_{\rm f}, Z)$	13	7	ΔR betw
$E_{\mathrm{T}}^{\mathrm{miss}}$	14	_	Missing
$p_{\rm T}(j_{\rm f})$	15	10	p_{T} of th
$ \eta(\mathbf{j}_{\mathbf{r}}) $	_	5	Absolut
$p_{\rm T}(Z)$	—	6	$p_{\rm T}$ of th
$p_{\rm T}(j_{\rm r})$	—	9	p_{T} of th

on

t) invariant mass of the *b*-jet and the untagged jet(s) tructed top-quark mass te value of the η of the j_f jet erse mass of the W boson ng score of the *b*-jet sum of the $p_{\rm T}$ of the leptons and jets in the event charge of the lepton from the *W*-boson decay te value of the η of the lepton from the W-boson decay e reconstructed W boson e lepton from the W-boson decay the reconstructed Z boson te value of the η of the reconstructed Z boson ween the j_f jet and the reconstructed Z boson g transverse momentum ie j_f jet te value of the η of the j_r jet he reconstructed Z boson ie j_r jet

PLB 800 (2019) 135042

			$\Delta R_{t-ch}/R_{t-ch}$	$\Delta \sigma / \sigma(t)$	$\Delta \sigma / \sigma(\bar{t})$
Variable	Description	Nonprofiled uncertainties			
Light-quark jet $ n $	Absolute value of the pseudorapidity of the light-quark	$\mu_{\rm R}/\mu_{\rm F}$ scale <i>t</i> channel	0.1	6.2	6.5
0 1) 1/1	jet	ME-PS scale matching <i>t</i> channel	0.5	2.9	2.3
Dijet mass	Invariant mass of the light-quark jet and the b-tagged jet	PS scale <i>t</i> channel	0.6	12.9	13.3
	associated to the top quark decay	PDF <i>t</i> channel	2.4	7.1	9.5
Top quark mass Invariant mass of the lepton, the neutrino top quark decay	Invariant mass of the top quark reconstructed from the	Luminosity		2.5	2.5
	top quark decay	Profiled uncertainties			
ΔR (lepton, b jet)	ΔR between the momentum vectors of the lepton and the	JES	0.5	1.7	2.1
	b-tagged jet associated to the top quark decay	JER	0.2	0.1	0.3
$\cos(heta^*)$	Cosine of the angle between the lepton and the light-	Unclustered energy	0.2	0.1	0.3
T ()	quark jet in the rest frame of the top quark	b tagging	0.1	1.2	1.2
p_T sum Scalar sum of the transverse momentum of the light quark jet and the b-tagged jet associated to the top quark decay	Scalar sum of the transverse momentum of the light-	Muon and electron efficiencies	0.2	1.1	1.0
	decay	Pileup	0.4	0.9	1.2
$m_{\mathrm{T}}^{\mathrm{W}}$	Transverse mass of the W boson	QCD bkg. normalization	0.2	0.3	0.5
$p_{\mathrm{T}}^{\mathrm{miss}}$	Missing momentum in the transverse plane of the event	MC sample size	2.6	2.3	3.3
ΔR (light jet, b jet)	ΔR between the momentum vectors of the light-quark jet	tt bkg. model and normalization	0.6	1.1	1.5
T	and the b-tagged jet associated to the top quark decay	Top quark $p_{\rm T}$	< 0.1	0.5	0.5
Lepton $ \eta $	Absolute value of the pseudorapidity of the selected lep-	tW bkg. normalization	0.1	0.4	0.5
W boson $ \eta $ Absolute value of the pseudorapidity of the reconstructed W boson	Absolute value of the pseudorapidity of the recon-	W/Z+jets bkg. normalization	0.2	0.3	0.5
	structed W boson	$\mu_{\rm R}/\mu_{\rm F}$ scale t \bar{t} , tW, W/Z+jets	0.8	0.3	0.5
Light-quark jet mass	Invariant mass of the light-quark jet	PDF t t , W/Z+jets	0.6	0.2	0.7

CMS-PAS-TOP-17-012

Treatment	Uncertainty	$\Delta \sigma / \sigma (\%)$			
	Lepton trigger and reconstruction	0.50			
	Limited size of samples of simulated events	3.13	$O^{(3)}$	(++-ID +)(=+H-I)	
	t ī modelling	0.66	$O_{\phi q} =$	$(\varphi' \tau D_{\mu} \varphi)(q \gamma^{r} \tau q),$	
	Pileup	0.35			
Profiled	QCD background normalization	0.08	0	$(\bar{q}\sigma^{\mu u}\tau^{I}t)\tilde{\phi}W^{I}_{\mu u}$	
TIOMEU	W+jets composition	0.13	$O_{tW} =$		
	Other backgrounds μ_R/μ_F	0.44			
	PDF for background processes	0.42	$O_{tG} =$	$(\bar{q}\sigma^{\mu\nu}\lambda^A t)\tilde{\phi}G^A_{\mu\nu}$	
	b-tagging	0.73			
	Total profiled	3.4		Bo Cu	
Nonprofiled	Luminosity	2.6	$O_G =$	$f_{ABC}G_{u}^{A\nu}G_{\nu}^{D\nu}G_{\rho}^{C\mu}$	
	JER	2.8			
	JES	8.0	0	$(=-mv)Av \tilde{v}CA$	
	PDF for signal process	3.8	$O_{u(c)G} =$	$(q\sigma^{\mu\nu}\Lambda^{\mu}t)\phi G^{\mu\nu}_{\mu\nu},$	
	Signal $\mu_{\rm R}/\mu_{\rm F}$	2.4			
	ME-PS matching	3.7			
	Parton shower scale	6.1			
	Total nonprofiled	11.5			
Total uncertainty		12.0			

Iotal uncertainty

EPJC 79 (2019) 886

Run1 combination of σ_{t-ch} measurements at LHC

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCTopWGSummaryPlots

$\sigma_{t-\text{chan.}}, \sqrt{s} = 7 \text{ TeV}$				
Combined cross-section	section 67.5 pb			
Il nontainte actorem	Uncertainty			
Oncertainty category	[%]	[pb]		
Data statistical	3.5	2.4		
Simulation statistical	1.4	0.9		
Integrated luminosity	1.7	1.1		
Theory modelling	5.1	3.5		
Background normalisation	1.9	1.3		
Jets	3.4	2.3		
Detector modelling	3.4	2.3		
Total syst. unc. (excl. lumi.)	7.5	5.0		
Total syst. unc. (incl. lumi.)	7.6	5.2		
Total uncertainty	8.4	5.7		

$\sigma_{t-\text{chan.}}, \sqrt{s} = 8 \text{ TeV}$				
Combined cross-section	87.7 pb			
Uncertainty category	Uncertainty			
	[%]	[pb]		
Data statistical	1.3	1.1		
Simulation statistical	0.6	0.5		
Integrated luminosity	1.7	1.5		
Theory modelling	5.3	4.7		
Background normalisation	1.2	1.1		
Jets	2.6	2.3		
Detector modelling	1.8	1.6		
Total syst. unc. (excl. lumi.)	6.3	5.5		
Total syst. unc. (incl. lumi.)	6.5	5.7		
Total uncertainty	6.7	5.8		

Run1 combination of σ_{tW} measurements at LHC

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCTopWGSummaryPlots

$\sigma_{tW}, \sqrt{s} = 7 \text{ TeV}$				
Combined cross-section	16.3 pb			
Uncertainty category	Uncertainty			
	[%]	[pb]		
Data statistical	14.0	2.3		
Simulation statistical	0.8	0.1		
Integrated luminosity	4.4	0.7		
Theory modelling	13.9	2.3		
Background normalisation	6.0	1.0		
Jets	11.5	1.9		
Detector modelling	6.2	1.0		
Total syst. unc. (excl. lumi.)	20.0	3.3		
Total syst. unc. (incl. lumi.)	20.5	3.3		
Total uncertainty	24.8	4.1		

	$\sigma_{tW}, \sqrt{s} = 8 \text{ TeV}$		
10) 000	Combined cross-section	23.1	pb
<u>19) 000</u>	Uncertainty category	Uncertainty	
		[%]	[pb]
	Data statistical	4.7	1.1
	Simulation statistical	0.8	0.2
	Integrated luminosity	3.6	0.8
	Theory modelling	11.8	2.7
	Background normalisation	2.2	0.5
	Jets	6.2	1.4
	Detector modelling	4.9	1.1
	Total syst. unc. (excl. lumi.)	14.4	3.3
	Total syst. unc. (incl. lumi.)	14.8	3.4
	Total uncertainty	15.6	3.6

JHEP 05 (201

36

Run1 combination of $|V_{tb}|$ measurements at LHC

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCTopWGSummaryPlots

ATLAS+CMS Preliminary	If V I = $\sqrt{\frac{\sigma_{\text{meas}}}{\sigma_{\text{meas}}}}$ from	September 2019			
LHC <i>top</i> WG	$\sigma : NI O + NNI I M$	STW2008nnlo	Combined $\left f_{\mathrm{LV}}V_{tb}\right ^2$		1.05
	PRD 83 (2011) 0 PRD 81 (2010) 0 A σ · scale \oplus PDF	91503, PRD 82 (2010) 054018, total theo 54028	Incortainty catogory	Un	certainty
	$m_{top} = 172.5 \text{ GeV}$		Uncertainty category	[%]	$\Delta f_{\rm LV} V_{tt}$
t-channel		$If_{LV}V_{tb}I \pm (meas) \pm (theo)$	Data statistical	1.8	
ATLAS+CMS combination 7+8		H 1.020 ± 0.040 ± 0.020	Simulation statistical		
CMS 13 TeV ² arXiv:1812.10514 (35.9 fb ⁻¹)	F+++-	1.00 ± 0.08 ± 0.02	Integrated luminosity	1.3	0.0
ATLAS 13 TeV ² JHEP 04 (2017) 086 (3.2 fb ⁻¹)		1.07 ± 0.09 ± 0.02	Theory modelling	4.5	0.
tW: ATLAS+CMS combination 7+8			Background normalisation	1.3	0.0
JHEP 05 (2019) 088 ATLAS 13 TeV ²		114 + 0.24 + 0.04	Jets	2.6	0.0
JHEP 01 (2018) 63 (3.2 fb^{-1})		$0.94 \pm 0.07 \pm 0.04$	Detector modelling	1.6	0.
JHEP 10 (2018) 117 (35.9 fb^{-1})		0.04 ± 0.07 ± 0.04	Top-quark mass	0.7	0.0
S-channel: ATLAS+CMS combination 8 Te JHEP 05 (2019) 088	V ^{1,3} ⊢ + ▼		Theoretical cross-section	4.3	0.
all channels:			Total syst. unc. (excl. lumi.)	7.1	0.0
ATLAS+CMS combination 7+8 JHEP 05 (2019) 088		H 1.020 ± 0.040 ± 0.020	Total syst. unc. (incl. lumi.)	7.2	0.0
		¹ including top-quark mass uncertainty ² σ_{theo} : NLO PDF4LHC11 (NPPS205 (2010) 10, CPC191 (2015) 74) ³ including beam energy uncertainty	Total uncertainty	7.4	0.0
0.4 0.6	0.8 1	1.2 1.4 1.6 1.8			
	اf _{LV} \	/ _{tb} l			

JHEP 05 (2019) 088

Evidence of s-ch. single top process at 8 TeV

• Lepton + 2 b-jet final state (2j2b) with
20.3 fb⁻¹ data at
$$\sqrt{s} = 8$$
 TeV
• Dominant backgrounds :
 \rightarrow tt⁻, *t*-ch. single top, W+bb
• Matrix-element-method to separate
signal from bkgs.
 \rightarrow approximate signal probability P(SIX)
• Profile likelihood fit of signal and bkg.
templates of P(SIX)
• Test of B vs S+B hypotheses
 \rightarrow evidence with 3.20
 $\sigma = 4.8 \pm 0.8 (\text{stat})^{+1.6}_{-1.3} (\text{syst}) \text{ pb}$
 $\sigma_{\text{SM}} = 5.2 \pm 0.2 \text{ pb}$
• Precision limited by data statistics

10

5

 10^{-5}

0

Epiphany 2020, Cracow