

Advanced Low Emittance Rings Technology

Ben Shepherd (Daresbury): Development of Adjustable Permanent Magnet Quadrupoles Les Dallin (CLS): Electromagnets with High Gradients for CLS 2.0 Abolfazl Shaveh (DLS): Magnet design for Diamond-II Upgrade Ciro Calzolaio (PSI): Magnets for the SLS Upgrade

Motivation for designing permanent magnet quadrupoles: electricity consumption and compactness

Permanent magnets already widely used in accelerators: mostly for **undulators** and **wigglers** in light sources

Best materials today:

Nd₂Fe₁₄B for highest strength (*B_r*)

 Sm_2Co_{17} for highest stability (H_{ci})

Pr₂Fe₁₄B at low temperature (77 K)

Advantages: No power, no water, compact, higher gradients Disadvantages: Tuning difficult, PMs variable, temperature dependent, radiation damage.

Permanent magnets have high temperature coefficients: NdFeB: -0.1%/°C, SmCo: 0.03%/°C Possible to compensate using FeNi shunt:

Permanent Magnet Quadrupoles :

Halbach array:

ESRF PM Quadrupole :

85 T/m gradient226 mm length12 mm bore radius

For $r_i = 10 \text{ mm}$, $r_e = 20 \text{ mm}$, $B_r = 1.38 \text{ T}$, $M = 16 \Rightarrow G = 130 \text{ T/m}$

ILC adjustable PM quadrupole :

SOLEIL Adjustable Quadrupole: QUAPEVA

12 mm gap100 mm length110-210 T/m gradient

Ben Shepherd (Daresbury): Development of Adjustable Permanent Magnet Quadrupoles

ZEPTO Quadrupoles: High Strength

- Gradient 15-60 T/m
- Pole gap **27.2 mm**
- Field quality ±0.1% over 23 mm
- Length 230 mm

ZEPTO-DLS Project

- Quadrupole specifications
 - Max integrated gradient 7.6 T
 - Min integrated gradient 0.2 T
 - Aperture diameter 32 mm
 - Field quality $\Delta G/G_o < 5 \times 10^{-3}$ at $r \le 10$ mm
 - **Splittable** to allow installation around vacuum chamber

Permanent Magnet Dipoles :

Sirius "Superbend" Dipole

ESRF Longitudinal Gradient Dipoles

600

Vertical field vs. longitudinal position

ZEPTO Dipole Design:

Danfysik Green Magnets:

Conclusions

Many accelerators are now using PM dipole and quadrupoles

Several advantages to using PMs:

Compact

Low power

No vibration

Disadvantages can be mitigated

Tuning

Temperature variation

Radiation effects

Variety of different tuning methods

Les Dallin (CLS): Electromagnets with High Gradients for CLS 2.0

CLS 2 – 3 GeV Ultralow Emittance Light Source

ALERT 2019 vortehop

Gradient [T/m²]

current [Amp]

2103

60

1586

60

2126

60

0

Les Dallin (CLS): Electromagnets with High Gradients for CLS 2.0

B' [T/m]

48.5

48.5

4.21

-6.0

ALERT 2019

Les Dallin (CLS): Electromagnets with High Gradients for CLS 2.0

Adjust Ø to evaluate various quadrupole magnets

Ø [mm]	B' [T/m] (90% eff.)
18	120
24	90
30	73

		D_n/ D₂
E.g.: Ø = 24 mm Relative Multipoles @ 10 mm	6	-9.8E-04
	10	-8.6E-05
	14	-1.8E-05
	18	-2.7E-07
	22	6.5E-06
	26	1.3E-05

Aperture Ø = 18 mm; 24 mm; 30 mm

Getting the photon beam out: open-sided quadrupole Qm5 (ϕ = 3.0 cm) Getting the photon beam out: open-sided quadrupole Qm5

Les Dallin (CLS): Electromagnets with High Gradients for CLS 2.0

Les Dallin (CLS): Electromagnets with High Gradients for CLS 2.0

Les Dallin (CLS): Electromagnets with High Gradients for CLS 2.0

Preliminary designs for CLS 2 Magnets are in progress

- high gradient electromagnets are used
- "simple" designs are used
- no special steel is required
 Ultralow Emittance is achieved: 25 pm-rad @ 3 GeV (an aggressive optics design)

Abolfazl Shaveh (DLS): Magnet design for Diamond-II Upgrade

Abolfazl Shaveh (DLS): Magnet design for Diamond-II Upgrade

Specifications of the magnets (roughly the same as for ESRF-EBS)

D. An one of	Loweth	Field	Max	ximum Str	ength		Туре	
wagnet	Length	Field	G ₀	S ₀	O ₀	No. of		
	[m]	[T]	[T/m]	[T/m ²]	[T/m ³]	magnets		
Longitudinal Gradient Dipoles (DL)	1	0.29 to 0.76	0	0	0	96	Permanent Magnet	
Transverse Gradient Dipole (DQ)	0.87	0.7	-33	0	0	48	Electromagnet	
Quadrupole Magnet (QM)	0.105		85	-	-	396	Electromagnet	
	0.15							
	0.185	-						
	0.25							
	0.36							
Sextupole Magnets	0.1			2950		200	Electromagnet	
(SM)	0.14	-	-	3830	-	200	Electionagnet	
Octupole Magnet (OM)	0.09	-	-	-	110300	48	Electromagnet	
Corrector	0.08		Bx: C).150		12	Electromagnet	
	0.08		By: C).150	12	Liectromagnet		

Abolfazl Shaveh (DLS): Magnet design for Diamond-II Upgrade

Longitudinal Gradient Dipole (DL) (like ESRF-EBS)

Current activities:

- Studying the DL magnets' cross-talk to the neighbouring magnets (i. e. quadrupoles) and investigating how to compensate this effect
- Considering the other options for magnetic field tuning (i.e. trim coils or mechanically adjustable magnetic shunts)
- Performing the process design for DL magnets including fabrication, assembly, alignment and measurements (i.e. building an in-house prototype)

Abolfazl Shaveh (DLS): Magnet design for Diamond-II Upgrade

Current Activities:

Considering the possibility of using the existing Dipole
 Power Supply Circuit by designing a new coil assembly

Abolfazl Shaveh (DLS): Magnet design for Diamond-II Upgrade

High Gradient Quadrupole Magnet

Pole Profile Options (r=12 mm, pole-to-pole gap>10mm)

- Conventional hyperbolic profile with high permeable material for the pole tip
- Segmented pole profile with standard yoke

Current Activities:

Design revision to remove end chamfers (simplifying the magnet manufacturing)

 $-i\infty$

 Considering different aperture radii for accommodating vessels in Anti-Bend configuration (r=12, 12.75, 14.25 mm)

Abolfazl Shaveh (DLS): Magnet design for Diamond-II Upgrade

Sextupole Magnet

Field component and errors at 10 mm Where: n=1, 2, 3, 4, ... refer to Dipole, Quadrupole, Sextupole, Octupole...

n			9					15				
Centra	l Multipoles [%]		-0.74					-0.53				
Integrated Multipoles [%]			-0.56					-0.63				
	n	1	2	3	4	5	6	7	8	9	10	11
Bx	an/a1 [%]	100	-8.74	-0.02	5.21	-35.05	-0.01	4.1	-0.16	-0.02	-0.13	1.87
	∫an.dz/ ∫a1.dz [%]	100	-7.58	-0.06	4.25	-28.74	0	3.07	-0.11	0.03	-0.13	1.52
Ву	bn/b1 [%]	100	0.82	-	0.47	34.96	-0.03	4.12	0	-1.9	-0.01	-1.85
	∫bn.dz / ∫b1.dz [%]	100	0.79	-	0.43	28.69	-0.01	3.02	0.01	-1.87	-0.02	-1.53

Current Activities:

- Design revision to reduces variety of Sextupoles
- Further field optimisations

Abolfazl Shaveh (DLS): Magnet design for Diamond-II Upgrade

DL Magnets Manufacturing and Alignment

- **For Every Module:**
- 1. Assembling modules with sorted PM blocks and shunt pieces
- 2. Measuring the magnetic field integral profile along beam axis
- 3. Tuning the integral field to the nominal value (known from the model) by altering shunt pieces
- 4. Relating the beam axis to the outer fiducials using laser tracker or FARO arm
- > For DL assembly
- 1. Aligning modules in the assembly and relating the assembly fiducials to the beam axis
- 2. Measuring the magnetic field integral for the DL assembly and performing extra tuning if necessary
- 3. Aligning the DL assembly on the girder using laser tracker

DQ Magnets Measurement and Alignment

- > Hall probe measurements (presumably at the manufacture site)
- Relating beam axis to the outer fiducials
- Aligning DQ on the girder using laser tracker

Multipoles Magnets

- > Option 1: Postproduction measurements and shimming, then aligning mechanically
- Option 2: Aligning in-situ using stretch wire bench

Ciro Calzolaio (PSI): Magnets for the SLS Upgrade

Lattice of one cell and the unit cell

Ciro Calzolaio (PSI): Magnets for the SLS Upgrade

Ciro Calzolaio (PSI): Magnets for the SLS Upgrade

ALERT 2019

Ciro Calzolaio (PSI): Magnets for the SLS Upgrade

Specifications and consequences for the magnet design

Specifications

- Narrow B-field profile: FWHM < 75 mm;
- Peak field in the GFR>4T:
- $\int Bdl = 0.54Tm$ (as for the RT dipoles);
- · Available longitudinal space: 415 mm;
- · Vacuum chamber OD: 20 mm

Additional constraints (valid for all the magnets)

Installation strategy in the

tunnel (possibility to mount/exchange the magnets keeping the vacuum chamber in place) + Necessity to evacuate the synchrotron radiation

Consequences

- $B_{conductor}/B_{GFR} > 1.3$
 - 4T peak → Nb-Ti (baseline)
 - 6T peak → Nb₃Sn
 - >6T peak→ HTS
- · Cooling system: conduction

- C-shape magnet
 - Lower mechanical rigidity;
 - Higher stray field.
- <u>Baseline</u>: open geometry without integrated vacuum chamber;
- Vacuum chamber integration under discussion.
 Page 10

ALERT 2019

Ciro Calzolaio (PSI): Magnets for the SLS Upgrade

Page 17

Ciro Calzolaio (PSI): Magnets for the SLS Upgrade

Ciro Calzolaio (PSI): Magnets for the SLS Upgrade

Magnetic measurements (1)

Moving wire: field integral

Compact Field mapper

Ciro Calzolaio (PSI): Magnets for the SLS Upgrade

Conclusions

For the SLS upgrade we need innovative magnet design:

- · High field Permanent LGB magnet: energy consumption;
- RT combined function electro-magnet: space requirement;
- High field Superconducting LGBs: hard X-rays sources (up to 80 keV).
- The design and construction plans for the electromagnets is almost ready;
- The optimization and the prototyping of the permanent magnets is ongoing;
- The conceptual design (magnetic + thermal + mechanical + quench) for a 4T peak superbend is ready;
- The BN and the BS magnets will be interchangeable: same field integral and length.