

Jonas Kallestrup :: PhD student :: Paul Scherrer Institut

SLS booster emittance exchange

Advanced Low Emittance Rings Technology workshop, 11-07-2019

Outline

- Motivation
- Emittance redistribution
- SLS booster overview
- Measurements
 - Coupling
 - Tune along ramp
 - Emittance exchange
- Damping effects
- Outlook
- Summary

Motivation

- The new generation of storage ring-based light sources are be based on Multi-Bend Achromat (MBA) lattices with very strong focusing and low dispersion achieving < 250 pm·rad horizontal emittance.
- A common consequence is a rather limited dynamic aperture of typically ~5-10 mm.
 - SLS 2.0 CDR: **5 mm** dynamic aperture when including errors for $\beta_x = 3.5$ m
- Existing 3th generation storage ring often inject using horizontal off-axis injections
 - Low dynamic aperture of new rings makes this challenging!
 - Upgrade projects often reuse injector complex! (Boosters w. $\epsilon_x > 50 \mathrm{nm} \cdot \mathrm{rad}$)
- New on-axis injection schemes under development
 - Technology not mature yet...
 - Off-axis still pursued as a "safe" choice:
 we know how to do it!

Motivation

- Several tricks can be used to improve off-axis injection efficiency or give safety margin
 - High-β region for injection
 - "Anti-septum"
 - See previous talk by M. Aiba
- Booster and transfer line initiatives
 - Reduction or Redistribution of booster emittances

Motivation

- Several tricks can be used to improve off-axis injection efficiency or give safety margin
 - High-β region for injection
 - "Anti-septum"
 - See previous talk by M. Aiba
- Booster and transfer line initiatives
 - Reduction or Redistribution of booster emittances

Emittance redistribution: sharing

- The transverse emittances can be redistributed by using the nonzero coupling of the machine
- Round beam is achieved by moving tunes to the coupling difference resonance: $Q_{\chi}-Q_{\nu}-\ell=0$

$$\epsilon_x = \epsilon_y = \frac{J_x J_y}{J_x + J_y} \epsilon_{x,0}$$

- Leads typically to a ≈50% reduction of horizontal emittance
- ESRF Booster: From 120/5 nm·rad to 60/60 nm·rad!
- Vertical dynamic aperture is plentiful
 - Move all horizontal emittance to the vertical plane!

Emittance redistribution: exchange

- A complete exchange of transverse emittances can be achieved by *crossing* the coupling resonance
 - Observed at the Proton Synchrotron (2001)
- 1. When Δ decreases, ϵ_x decreases, ϵ_v increases
- 2. When $\Delta = 0$, $\epsilon_x = \epsilon_y = \frac{\epsilon_{x,0} + \epsilon_{y,0}}{2}$
- 3. When Δ increases on the other side of the resonance

$$-\Delta \gg |C| : \epsilon_x \to \epsilon_{y,0} \quad \epsilon_y \to \epsilon_{x,0}$$

WEOAA01

Proceedings of IPAC2016, Busan, Korea

TRANSVERSE EMITTANCE EXCHANGE FOR IMPROVED INJECTION EFFICIENCY *

P. Kuske[†] and F. Kramer, Helmholtz-Zentrum Berlin, Berlin, Germany

- Goal: Cross the coupling resonance quickly and extract immediately after!
- How: Rapid modification of quadrupole family ramp

$$\epsilon_{x} = \epsilon_{x,0} + \frac{|C|^{2}}{\Delta^{2} + |C|^{2} + \Delta\sqrt{\Delta^{2} + |C|^{2}}} \frac{\epsilon_{y,0} - \epsilon_{x,0}}{2}$$

$$\epsilon_{y} = \epsilon_{y,0} - \frac{|C|^{2}}{\Delta^{2} + |C|^{2} + \Delta\sqrt{\Delta^{2} + |C|^{2}}} \frac{\epsilon_{y,0} - \epsilon_{x,0}}{2}$$

 Δ : betatron tune separation $Q_x - Q_y - \ell$ |C|: coupling coefficient

Emittance redistribution: exchange

- A complete exchange of transverse emittances can be achieved by *crossing* the coupling resonance
 - Observed at the Proton Synchrotron (2001)
- 1. When Δ decreases, $\epsilon_{\rm x}$ decreases, $\epsilon_{\rm v}$ increases
- 2. When Δ = 0, $\epsilon_{\rm x}$ = $\epsilon_{\rm y}$ = $\frac{\epsilon_{\rm x,0} + \epsilon_{\rm y,0}}{2}$
- 3. When Δ increases on the other side of the resonance

$$-\Delta \gg |C| : \epsilon_x \to \epsilon_{y,0} \quad \epsilon_y \to \epsilon_{x,0}$$

WEOAA01

Proceedings of IPAC2016, Busan, Korea

TRANSVERSE EMITTANCE EXCHANGE FOR IMPROVED INJECTION EFFICIENCY *

P. Kuske[†] and F. Kramer, Helmholtz-Zentrum Berlin, Berlin, Germany

- Goal: Cross the coupling resonance quickly and extract immediately after!
- How: Rapid modification of quadrupole family ramp

$$\epsilon_{x} = \epsilon_{x,0} + \frac{|C|^{2}}{\Delta^{2} + |C|^{2} + \Delta\sqrt{\Delta^{2} + |C|^{2}}} \frac{\epsilon_{y,0} - \epsilon_{x,0}}{2}$$

$$\epsilon_{y} = \epsilon_{y,0} - \frac{|C|^{2}}{\Delta^{2} + |C|^{2} + \Delta\sqrt{\Delta^{2} + |C|^{2}}} \frac{\epsilon_{y,0} - \epsilon_{x,0}}{2}$$

 Δ : betatron tune separation $Q_x - Q_y - \ell$ |C|: coupling coefficient

SLS booster: overview

Highlights

- First booster built specifically for top-up operation
- Mounted on inner wall of Storage Ring tunnel
 - ≈ same circumference as SR
- Low horizontal emittance
 - Vertical emittance probably ~2-3 nm.rad while minimum is 0.05
- Tune are relatively close
- Digital magnet power supply control
- Dipoles with quadrupole + sextupole components
 - Quadrupole families for dispersion and tune control
- Relatively weak and inexpensive magnets
- Extremely flexible and easily controllable!

Injection energy	0.1	GeV
Extraction energy	2.4	GeV
Circumference (m)	270.0	m
$\epsilon_{x,y}$	9.6 / 0.05	nm rad
$\nu_{x,y}$	12.41 / 8.38	
Energy spread	7.5×10^{-4}	
RF frequency (MHz)	500	MHz
Damping time at 3 GeV	11.4 / 18.5 / 13.4	ms
Revolution period	0.9	μs
Repetition rate	3.1	Hz

SLS booster: QF family

- Digitally controllable in 4000 steps along full ramp
 ≈ 88 turns / step ≈ 79 μs / step.
 - Quite nice resolution!
- Maximum current: 140 A

# magnets	6	
Magnetic length	0.4	m
Max. gradient at 2.4 GeV	16	${ m T}{ m m}^{-1}$
Max. current	140	A
Max. ramping speed	1600 / 1.44	$\mathrm{A}\mathrm{s}^{-1}$ / $\mathrm{m}\mathrm{A}\mathrm{turn}^{-1}$
$\beta_{x,y}$	10.1 / 2.64	m
$\beta_{x,y}$ $\alpha_{x,y}$	-2.67 / 0.286	•••
$\eta_{x,y}$	0/0	m

Closest Tune Approach measurements

Coupling is measured using the Closest Tune Approach at the top of the ramp

$$Q_{1,2} = Q_{x,y} \mp \frac{1}{2}\Delta \pm \frac{1}{2}\sqrt{\Delta^2 + |C|^2}$$
 $\Delta = Q_x - Q_y - \ell$

- 'Natural' coupling is substantial:
 - |C| = 0.019
 - No need for additional skew quadrupoles

Tune along ramp

$$Q_{1,2} = Q_{x,y} \mp \frac{1}{2}\Delta \pm \frac{1}{2}\sqrt{\Delta^2 + |C|^2}$$

Goals:

- Cross the coupling resonance quickly to achieve the emittance exchange
- Extract beam shortly after to avoid damping
- I_{OF} : 98 $A \to 95A$

Page 13

Tune along ramp

$$Q_{1,2} = Q_{x,y} \mp \frac{1}{2}\Delta \pm \frac{1}{2}\sqrt{\Delta^2 + |C|^2}$$

Goals:

- Cross the coupling resonance quickly to achieve the emittance exchange
- Extract beam shortly after to avoid damping
- I_{QF} : 98 $A \to 95A$

Page 14

Tune along ramp

$$Q_{1,2} = Q_{x,y} \mp \frac{1}{2}\Delta \pm \frac{1}{2}\sqrt{\Delta^2 + |C|^2}$$

Goals:

- Cross the coupling resonance quickly to achieve the emittance exchange
- Extract beam shortly after to avoid damping
- I_{QF} : 98 $A \rightarrow 95A$

Page 15

Results

- Beam size measured on OTR in Boosterto-Ring transfer line
- Emittance Exchange process measured by extracting at earlier times over many ramp cycles
- Assuming β, η constant during quadrupole sweep

$$\epsilon_x = \frac{\epsilon_{x,0}}{4}, \qquad \epsilon_y = 3.6\epsilon_{y,0}$$

Not a "big" change but remember: $(\epsilon_x, \epsilon_y) \approx (10, 2.5) \text{ nm} \cdot \text{rad}$

Results

- Test of injections with limited aperture by inserting horizontal scraper
- Scraper can be inserted further without loss of charge when using emittance exchange
- Fitting Cumulative Distribution Function

$$\frac{\sigma_{normal}}{\sigma_{EE}} = 2.3$$

Emittance redistribution: Radiation damping

- Damping is a necessary evil for emittance exchange
 - Quadrupole power supplies must ,beat' the damping

Rule of thumb (1):

$$t_{cross} \ll \tau_{x,y} \approx 5-15 \text{ ms}$$

 To gain maximum emittance exchange, the tune sweep must start and end far away from the resonance

Rule of thumb (2):

$$|\Delta_{start, finish}| \ge 3|C|$$

Our measurements:

$$au_x \approx 11 \text{ ms}, \ t_{cross} \approx 2.5 \text{ ms}$$

 $\Delta_{start} \approx 2|C|, \ \Delta_{end} \approx 4|C|$

$$\epsilon_{x} = \epsilon_{x,0} + \frac{|C|^{2}}{\Delta^{2} + |C|^{2} + \Delta\sqrt{\Delta^{2} + |C|^{2}}} \frac{\epsilon_{y,0} - \epsilon_{x,0}}{2}$$

$$\epsilon_{y} = \epsilon_{y,0} - \frac{|C|^{2}}{\Delta^{2} + |C|^{2} + \Delta\sqrt{\Delta^{2} + |C|^{2}}} \frac{\epsilon_{y,0} - \epsilon_{x,0}}{2}$$

Emittance redistribution: Radiation damping

Rule of thumb (1):

$$t_{cross} \ll \tau_{x,y} \approx 5-15 \text{ ms}$$

Rule of thumb (2):

$$\Delta_{start, finish} \geq 3|C|$$

 Crossing time depends on ramping speed and the total tune shift:

$$t_{cross} = \Delta I \cdot v_{ramp}$$

$$= cal \cdot v_{ramp} \cdot \frac{4\pi |\Delta_{start} + \Delta_{end}|}{\Sigma \beta_i \ell_i}$$

- Relief constraints on power supplies
 - Decrease |C|
 - BUT: smaller |C| needs longer crossing time to do the exchange adiabatically*
 - → Increased radiation damping

$$\epsilon_{x} = \epsilon_{x,0} + \frac{|C|^{2}}{\Delta^{2} + |C|^{2} + \Delta\sqrt{\Delta^{2} + |C|^{2}}} \frac{\epsilon_{y,0} - \epsilon_{x,0}}{2}$$

$$\epsilon_{y} = \epsilon_{y,0} - \frac{|C|^{2}}{\Delta^{2} + |C|^{2} + \Delta\sqrt{\Delta^{2} + |C|^{2}}} \frac{\epsilon_{y,0} - \epsilon_{x,0}}{2}$$

^{*} See averaging of single particle emittance in: A. Franchi, E. Métral, R. Tomás, "Emittance sharing and exchange driven by linear betatron coupling in circular accelerators" eq. 20 & 21 Page 19

Improvements for future measurements

- Rule of thumb (2) was not fulfilled: $\Delta_{start} < 3|C|$
 - Starting point too close to resonance
 - Damping already plays a role decreasing efficiency of exchange
- Currently no reliable measurement of emittances
 - Betatronic and dispersive beam size contributions approximately equal
 - → standard quadrupole scans not useful
 - Attempts with multi-quad, multi-screen scans in progress
- Minimization of ϵ_y \rightarrow larger reduction of ϵ_x
 - Currently, $\epsilon_{\nu} \approx$ 2-3 nm·rad and we hope to get < 1 nm·rad
 - Orbit correction: currently only 2 BPMs in booster

- Emittance exchange successfully tested: many future *and* existing facilities might apply this technique depending on their booster and injection scheme
- High-emittance (≥ 50 nm) boosters can have a significant relaxation of required horizontal acceptance, since vertical emittance is typically less than 5 nm
 - Large emittance does not imply longer crossing times
- Easy to implement:
 - Does (should) not require modifications of booster or transfer line hardware
 - Exploits 'natural' coupling of the machine

Summary

- Upgrade projects tend to reuse existing injector complex
- Small dynamic aperture make off-axis injections challenging
- The booster emittance can be redistributed through emittance exchange by coupling resonance crossing before extraction
- A factor 4 (3.6) decrease (increase) in horizontal (vertical) emittance achieved in SLS booster
 - Close to full exchange!
 - Can be useful for other existing and future facilities and (almost) immediately applied

Summary

Extra slides

Crossing speed dependency

- Best exchange for the crossing $I_{QF}=98A \rightarrow 95A$ with a "crossing time" of \approx 2200 turns.
- Small machine coupling: Longer crossing time needed
 - → Radiation damping becomes important
 - → Additional coupling needed
 - → Additional skew quadrupole needed

Crossing speed dependency

- Consequences of low coupling: mismatch of emittance
 - If coupling is small, then a longer crossing time is needed to do a proper emittance exchange without mismatch of the emittance.
 - If crossing time is too short, the emittance exchange becomes nonadiabatic.
 - If crossing time is too long, radiation damping & quantum excitation will play a role.
 - Skew quadrupoles might be needed if coupling is too small.

Results

- Movie of measured beam profile
 - Emittance exchange is not very visible due to large dispersion at OTR monitor $(D_x, D_y) \approx (0.1, 0.1)$ m measured

