
What’s new in
Nova CellsV2?

Matt Riedemann (mriedem on IRC) - Huawei
Surya Seetharaman (tssurya on IRC) - CERN

130/04/2019

Overview

1. Introduction to Nova Multi-Cells
2. What’s new in Cells?

a. Handling Down Cells
i. Making listing operations more resilient
ii. A new mechanism for calculating Quotas
iii. Operator and user highlights
iv. Known issues and limitations

b. Cross-cell Resize
i. Use cases
ii. Design specifics and implementation workflow
iii. Known issues and limitations

2

Nova Cells (multi-cells-v2)

3

See nova cells
for a more
detailed view.

https://docs.openstack.org/nova/latest/user/cellsv2-layout.html

Handling Down Cells

● A step towards making cells more resilient.
● Available from the Stein release.

4

Problem Statement

5

Problem StatementProblem Statement

● When a cell goes down basic operations like GET /servers
and GET /os-services stop working for the whole
infrastructure.

● However one cell going down should not affect the users and
operators from listing resources from the API.

A single cell going down should not impact the whole infrastructure

6

7

Implemented Solution

Return partial information for the down cells from the API database

7

Partial response
constructed for cell2

from API DB

Scoped Use Cases

The specific use cases that have been addressed using the
aforementioned solution are:

1. Listing Servers
2. Viewing a Server
3. Listing Compute Services

3.1. Note that this is limited to the “nova-compute” services per cell.

8

See handling down cells for more information.

https://developer.openstack.org/api-guide/compute/down_cells.html

9

Implemented Solution

Return partial information for the down cells from the API database

9

Partial response
constructed for cell2

from API DB

Example Scenario

We have three cells which are all up:

We force cell2 to go down:

10

Listing Servers

Response when cell0 and cell1 are up but cell2 is down:

11

Viewing a Server

From a down cell

12

Listing Services

Normal response when all cells are up:

Response when cell0 and cell1 are up but cell2 is down:

13

User highlights

All the edge cases that are not supported for minimal constructs would
give responses based on the operator’s configuration of the deployment,

either skipping those results or returning an error.

● From microversion 2.69 partial results will be available from the
down cells.

● Prior to 2.69, depending on list_records_by_skipping_down_cells
user will either get :
○ A response where results are skipped from the down cells when the

config option is set to True (default).
○ A 500 error response when the config option is set to False.

14

https://docs.openstack.org/nova/latest/configuration/config.html#api.list_records_by_skipping_down_cells

Edge Cases

● Filtering: partial constructs are not supported with filters since it
is not possible to validate the matches from the down cells.

○ “all-tenants/all-projects” and “minimal” are supported.

● Marker: if the marker specified is an instance from a down cell
the request will fail with a 500 error code.

● Sorting: partial constructs are not supported like for the filters.

● Paging: partial constructs are not supported like for sorting and
filtering.

15

● Configuration considerations for a cell timeout

○ database.max_retries: by default 10 times before nova declares
the cell is unreachable.

○ database.retry_interval: by default 10 seconds

○ CELL_TIMEOUT: hardcoded to 60 seconds after which nova-api
gives up and returns partial constructs.

● Disabling down cells:
○ removed from being a scheduling candidate.

Operator highlights

16

See cellsv2_management for more information.

https://docs.openstack.org/nova/latest/configuration/config.html#database.max_retries
https://docs.openstack.org/nova/latest/configuration/config.html#database.retry_interval
https://github.com/openstack/nova/blob/e6f82ce59981808f0ffe5a9025003c8945fa8136/nova/context.py#L53
https://docs.openstack.org/nova/latest/admin/cells.html

Known Issues
● nova-api service hangs on startup.

○ if at least one cell is down and upgrade_levels.compute = auto
○ It needs to connect to all the cells to gather the compute service’s

RPC API version to determine the version cap.
○ See bug 1815697 for more details.
○ workaround is to pin upgrade_levels.compute to a specific release.

● Performance degradation.
○ with regards to operations that need to hit all cells.

● Needless to say that down cell targeted operations like server
creation or deletion will not work.

17

https://bugs.launchpad.net/nova/+bug/1815697
https://docs.openstack.org/nova/latest/configuration/config.html#upgrade_levels.compute

Quota Calculation

● Introducing a new quota calculation
system that is independent of cells!

18

Problem StatementProblem Statement

● Cores, RAM and instances are counted by reading all the cell
databases and aggregating the results.

○ We use the scatter-gather utility to loop through cells in parallel.

● Quota calculation mechanism skips counting resources from the
unreachable cells.

○ Hence if the user had instances in the down cell these would not have been
accounted for when they request a new server creation.

○ However when the cell comes up this will have implications since now the
user would be using more resources than allowed.

A cell going down should not impact the quota calculation
19

https://github.com/openstack/nova/blob/a991980863f056323c1ee9fd6a46dbc4cb899eca/nova/context.py#L414

Implemented Solution

● Instead of looping over all the
cell databases we simply
○ count instances from the

API database
○ count RAM and cores

from placement

Counting Resources from Placement and API database

Implementation credit: Melanie Witt (melwitt on IRC) - RedHat

20

Operator Highlights

● You have to opt-into the new way of counting by setting
[quota]count_usage_from_placement to True.
○ By default nova will still use the legacy way of counting quotas

from the cell databases.

● Run online data migrations before using the new system
○ else the mechanism will fallback to the legacy way of counting

resources.

See count_quota_usage_from_placement for more details

21

https://specs.openstack.org/openstack/nova-specs/specs/train/approved/count-quota-usage-from-placement.html

Operator Highlights (continued)

● Behavior changes from legacy counting for cores and ram:
○ ERROR instances in cell0 will not be counted
○ During resize quota counting is doubled

■ counts allocations against source and destination

● Limitation:
○ Deployments using multiple nova’s and a single placement must

not use placement to count quotas.

22

Cross-cell Resize

23

Use case

● Cloud uses cells to shard by hardware generation and wants to

migrate servers from old cells to new cells

● Users can naturally aid in the cell migration by resizing their

servers and retain volumes/ports/UUID

24

Design overview

● Tries to follow traditional resize flow but with entirely new code

○ Server state transitions will be the same

● Enables cold migrating to a target host in another cell

● Full orchestration from (super)conductor using RPC calls

○ RPC timeout controlled with long_rpc_timeout option

● Target host is validated for volume and port connections

25

https://docs.openstack.org/nova/latest/configuration/config.html#DEFAULT.long_rpc_timeout

Design overview (continued)

● Instance.hidden field added

● Temporary glance snapshot created for non-volume-backed

servers (like shelve)

● New policy rule: compute:servers:resize:cross_cell

○ Disabled by default for all users

● CrossCellWeigher added

26

Traditional resize flow

27

Cross-cell resize flow

28

Comparison summary

29

Traditional Cross cell

Blocking API Until prep_resize on dest Until cast to conductor

Orchestration Computes RPC to each
other

Conductor orchestrates
between cells and
computes at the top

Root disk file transfer Direct copy between hosts Temp snapshot in glance

Database Single, no duplication Duplicate records created
in the target cell DB

Limitations and known issues

● Personality files are not retained

● Config drive will be rebuilt in the target cell

● _poll_unconfirmed_resizes periodic task may not work

● Some instance action events will be different from traditional

resize

● Notification source may change (global vs per-cell notification

queue)

30

https://docs.openstack.org/nova/latest/user/cellsv2-layout.html#notifications
https://docs.openstack.org/nova/latest/user/cellsv2-layout.html#notifications

Help wanted

● Reviews
○ https://review.opendev.org/#/q/status:open+topic:bp/cross-cell-resize

● Testing

○ Manual

○ CI: nova-multi-cell job

31

https://review.opendev.org/#/q/status:open+topic:bp/cross-cell-resize
https://review.opendev.org/#/c/655222/

Thanks for listening!
Questions??

32

Backup

33

Discussed Potential Solutions

● Using searchlight to backfill when there are down cells. Check
out listing instances using Searchlight for more details.

● Adding backup DBs for each cell database which would act as
read-only copies of the original DB in times of crisis.
○ however this would need massive syncing and may fetch

stale results.

34

https://specs.openstack.org/openstack/nova-specs/specs/pike/approved/list-instances-using-searchlight.html

Reality… :)

35

Implemented Solution

● Gather all the responses for the records from the up cells like
normal and when we find down cells,
○ Go to the API database and fill in the available information for

those records from the down cells.
○ As a result the response will have missing information for the

records from the down cells.
○ The status of such records will be “UNKNOWN” for the users to

realize the transient down time.

Return partial information for the down cells from the API database

36

