
Monte Carlo generators for the modelling of multijet processes in ATLAS at 13 TeV

Evelin Meoni (Università della Calabria & INFN)

UNIVERSITÀ DELLA CALABRIA

Volai Hut

on behalf of the **ATLAS Collaboration**

XXVII International Workshop on Deep Inelastic Scattering and Related Subjects

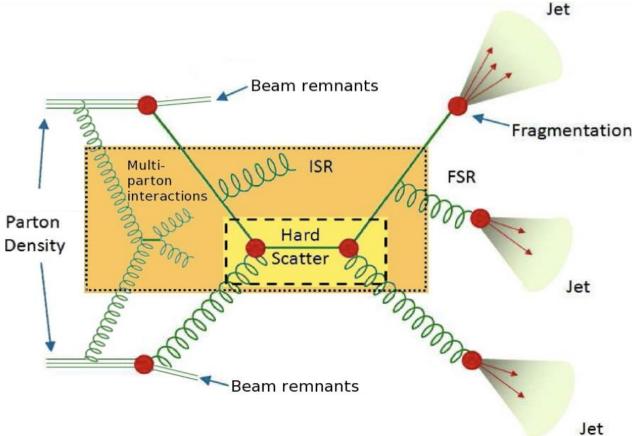
Torino (Italy), 8 - 12 April 2019

Introduction

Why is MC modelling of paramount importance at LHC?

In cross-section measurements, MC used to **unfold detector level results** correcting for efficiencies, resolutions and acceptances and used **to correct fixed-order calculations for non-perturbative effects** in order to allow comparisons with data

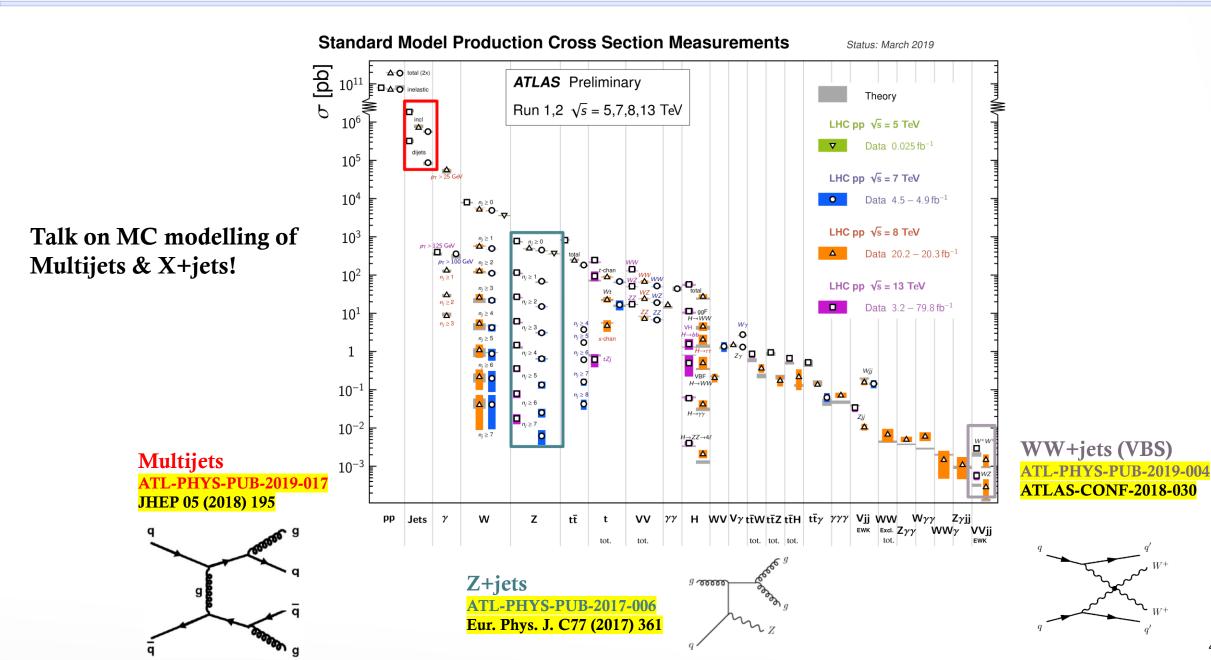
In precision measurements of SM parameters, MC used to **build templates** of the sensitive observables


In measurements and searches, **estimation of backgrounds** often fully MC-based (small background) or based on a mixture of MC and data-driven techniques

MC used to assess signal and background systematics

Our ability to constrain and discover New Physics depends on having reliable MC predictions with well understood systematic uncertainties!

MCs


- Description of pp collisions in MC via "factorisation":
- ✓ Hard Scattering (& Resonance decay) via Matrix Element
- ✓ Initial and State Radiation via Parton Shower (PS)
- ✓ Parton density via PDFs
- ✓ **Underlying Event (UE):** everything in a pp collisions expect the hard scattering via phenomenological models
 - *Multi-Parton Interactions (MPI):* additional parton-parton scatterings between other partons from the same protons *Beam remnants*
- ✓ Fragmentation and Hadronisation via non-perturbative models of color-singlet parton systems

Why does MC modelling of jet processes play a leading role in this effort?

LHC is a jet factory, processes involving jets are crucial inputs for the **understanding of basic physics modelling features**

Outline

SZ.

4

Multijet MC configuration

Detailed study performed recently on several MC configurations simulating inclusive jet production:

MC	ME order	PDFs of ME	PS & UE & Had Models	PS &UE tunes
Pythia 8.230	LO 2→2	NNPDF23LO	p _T -ordered PS	A14 tune
			Lund string model for Had	
Sherpa 2.2.5	$12.2.5 LO 2 \rightarrow 2 CT14NNLO p_T-ordered PS (CSS Sherpa)$		Sherpa tune	
			Sherpa AHADIC model for Had (based on Cluster Fragm)	(CT10)
			p _T -ordered PS (CSS Sherpa)	
			Lund string model for Had (Pythia6.4)	
MadGraph+Pythia8 (MadGraph5_aMC@NLO 2.3.3.1)	LO up to 4 part	NNPDF30NLO	PS&Had: Pythia 8.212	A14 tune (NNPDF23LO)
Powheg+Pythia8 (Powheg-Box V2)	NLO dijets	NNPDF30NLO	PS&Had: Pythia 8.230	A14 tune (NNPDF23LO)
Herwig 7.1.3	NLO dijets	MMHT2014NLO	Angular ordered PS	Dedicated tune
			Cluster model for Had	
			Dipole PS	Dedicate tune
			Cluster model for Had	

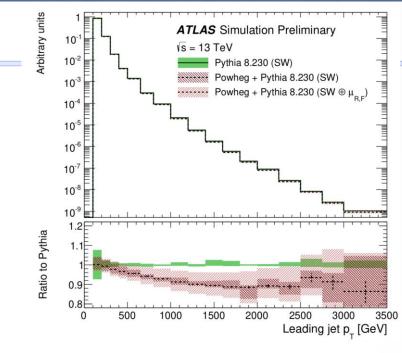
Explored impact of different aspects:

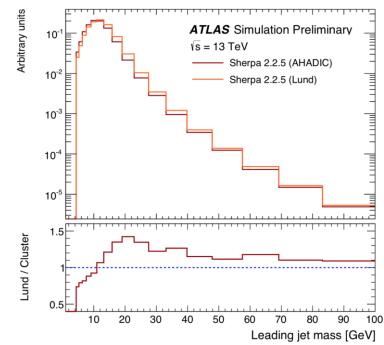
- **QCD orders of ME** (LO vs NLO)
- **PS models** (p_T ordered vs angular ordered)
- Factorisation and Hadronisation models (Lund vs cluster models)

Multijet MC configuration

ME order impact:

МС	ME order	PDFs of ME	PS & UE & Hadr Models	PS &UE tunes
Pythia 8.230	LO 2→2	NNPDF23LO	p _T -ordered PS	ATLAS A14
			Lund model for Had	
Powheg+Pythia8	NLO	NNPDF30NLO	PS: Pythia 8.230	A14 tune

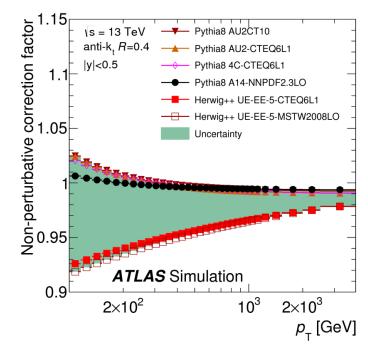

Large uncertainty at low p_T in **LO Pythia8** (PS unc only), PDFs uncertainties play a role at higher p_T in **NLO Powheg+Pythia8** (PS+scale+PDF unc)


- employed per-event weight functionality newly implemented in both MCs

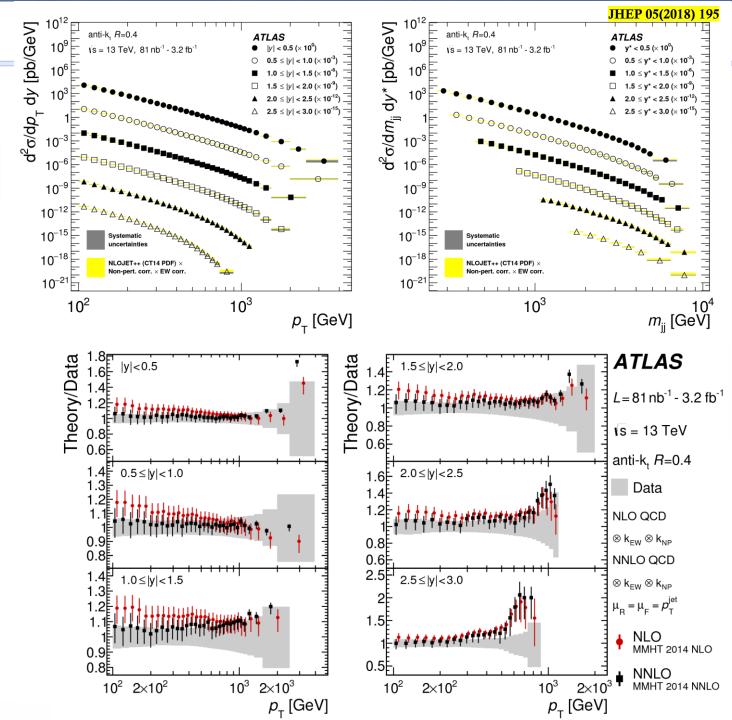
Hadronisation model impact:

МС	ME order	PDFs of ME	PS & UE & Hadr Models	
Sherpa 2.2.5	LO 2→2	CT14NNLO	p _T -ordered PS (CSS Sherpa) Sherpa AHADIC model for Had based on Cluster Fragm	
			p _T -ordered PS (CSS Sherpa) Lund model for Had with Pythia6.4	

Impact of 2 hadronization models in Sherpa reaches the level of 45% at low jet mass

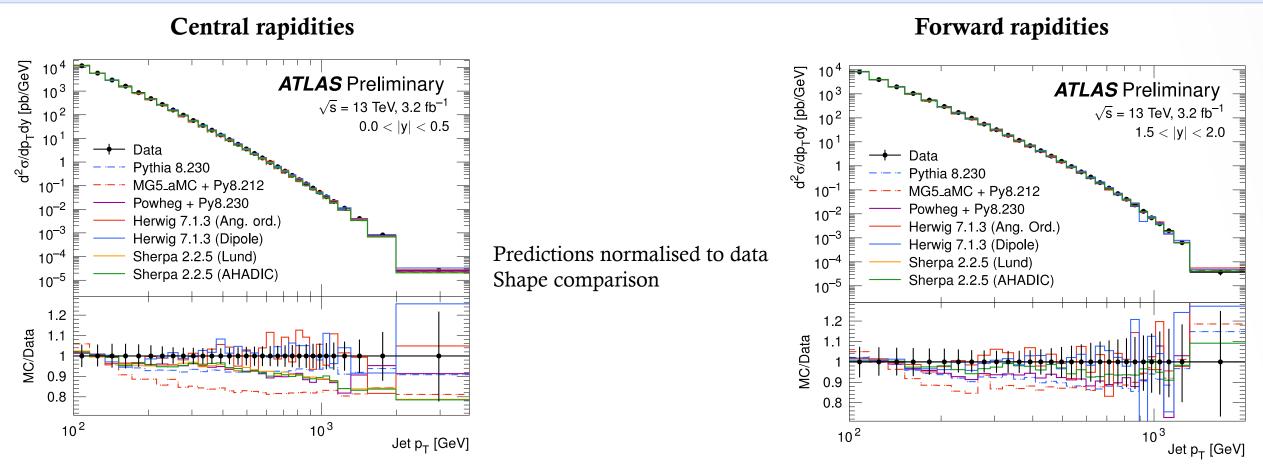


Inclusive jet cross-section


First ATLAS measurement of inclusive jet and dijet cross-section @13 TeV: p_T measured up to 3.5 TeV and m_{jj} up to 9 TeV

More info in the talk of C. Young (Wednesday)

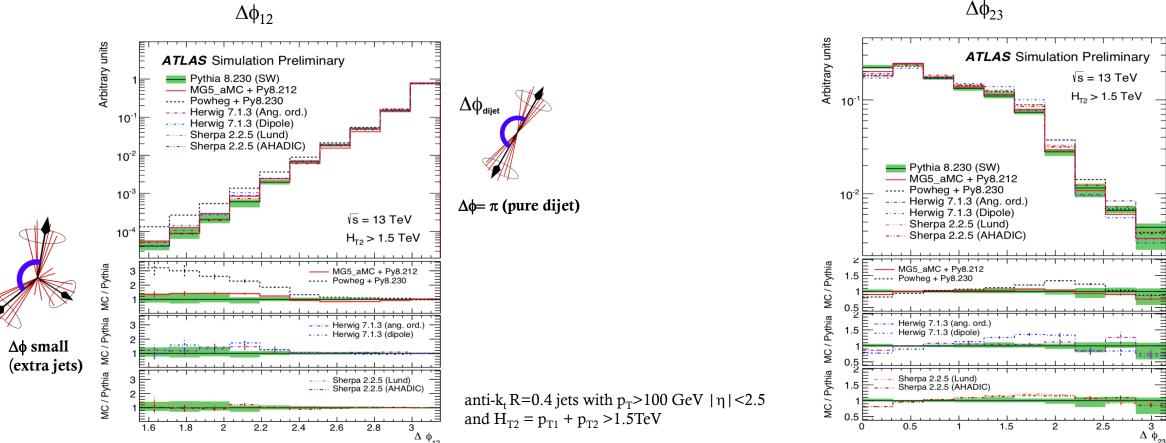
Fair agreement of **NLO prediction** (corrected for non-perturbative and EW effects) with data



No significative difference between NLO and **NNLO** when p_T is used as QCD scale

Inclusive jet cross-section

NLO Herwig7 with angular-ordered PS provides the best description of the data for all rapidity ranges, **LO Sherpa** matches very well the data for forward rapidities


PS model impact:

Different PS models in Herwig7 (angular-ordered PS vs dipole PS) give small differences in the description of the data

Multijet Event Topology

Azimuthal decorrelation between leading jets allows to test additional radiation emission: 3^{rd} jets from PS in Pythia8 and Sherpa (LO $2\rightarrow 2$), from ME in MadGraph+Pythia8 (LO up to 4p), Herwig and Powheg+Pyhia8 (NLO)

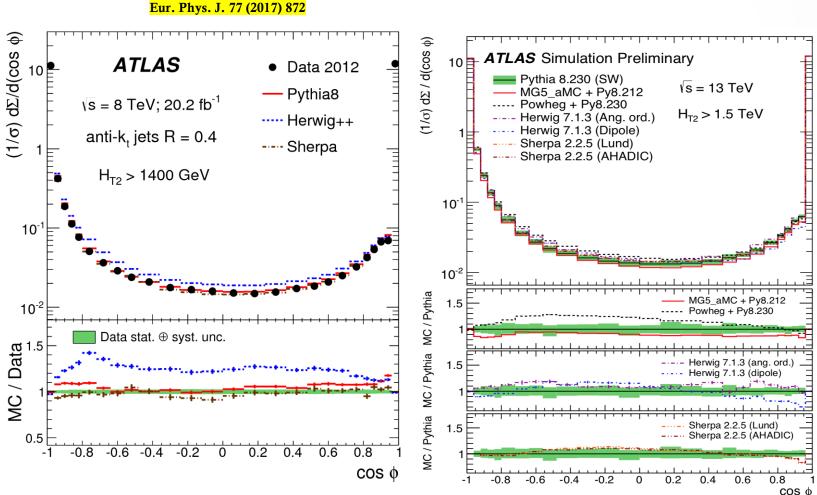
 $\Delta \phi_{12}$

Sherpa and **MadGraph+Pythia8** give a similar description as the one of **Pythia8**.

Powheg+Pythia8 shows a much stronger decorrelation

 $\Delta \phi_{23}$ sensitive to the color coherence: Powheg+Pythia8 and Herwig7 with dipole PS show the larger differences with respect to Pythia8

Multijet Event Shape

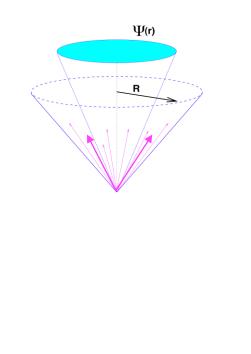

Event shapes sensitive to hard gluon radiation

Transverse Energy-Energy Correlation (TEEC) = transverse energy-weighted distribution of azimuthal difference between jet pairs

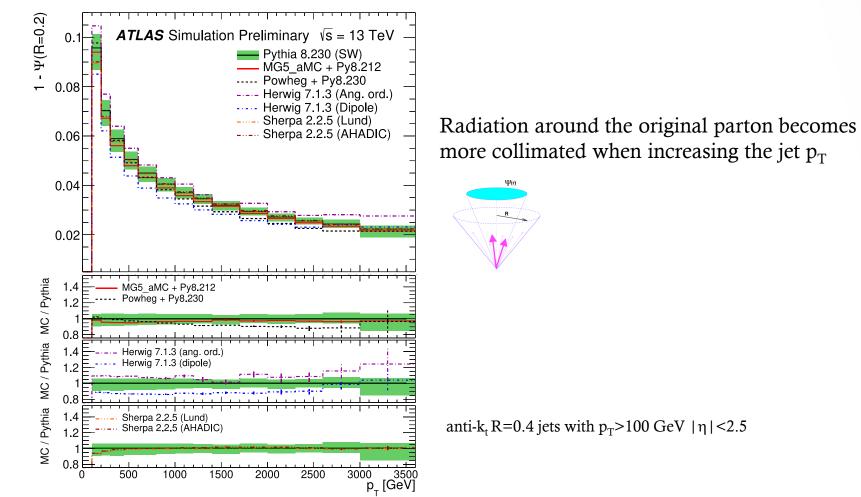
 $\frac{1}{\sigma} \frac{d\Sigma}{d\cos\phi} = \frac{1}{N} \sum_{A=1}^{N} \sum_{ij} \frac{E_{Ti}^{A} E_{Tj}^{A}}{\left(\sum_{k} E_{Tk}^{A}\right)^{2}} \delta(\cos\phi - \cos\phi_{ij})$ TEEC used to get α_{s} at various Q-scale $\frac{\text{Data-MC@8TeV:}}{\text{Pythia8} (\text{LO } 2 \rightarrow 2) \text{ and } \text{Sherpa 1.4} (\text{LO up to 3 p})$ sufficient to provide a good description of the data, much better than LO Herwig with angular-ordered PS (v2.5.1)

Latest MC@13TeV

MadGraph+Pythia8 (LO up to 4 p) shows less activity in the central region than **Pythia8**, all other MCs predict slightly more large-angle radiation


anti-k, R=0.4 jets with $p_T{>}100~GeV$ $|\,\eta\,|{<}2.5$ and H_{T2} = p_{T1} + $p_{T2}{>}1.5TeV$

Multijet Jet Shape



Jet shapes sensitive to soft radiation

Integral Jet Shape $\Psi(r) =$ fraction of jet p_T inside a cone of radius r

Fraction of the jet $p_{\rm T}$ outside a cone of ~0.2 as a function of the jet $p_{\rm T}$

Pythia8 (p_T ordered PS) and Herwig7 show significant differences: **dipole PS** predicts systematically narrower jets than Pythia8, while the **angular-ordered PS** gives wider energy distributions inside the jet cone.

Z+jets

Look at leptonic decays $Z \rightarrow \mu\mu/ee$ (very clear probe)

Kinematic region with high efficiencies, good detector performances and low backgrounds **Leptons**: p_T >25 GeV, $|\eta| < 2.4 (\mu) - 2.47 (e)$ **Z:** 71 GeV <m₁₁<111 GeV **Jets:** anti- $k_t R = 0.4$, $p_T > 30 \text{ GeV}$, |y| < 2.5, $\Delta R_{li} > 0.4$ 10⁶ Events $Z/\gamma^*(\rightarrow \mu^+\mu^-) + jets$ MC Stat.
Syst. Und ATLAS Z→ ee, Sherpa 2.2 3 TeV, 3.16 fb Dibosor Гор quark 10 Multijet $Z \rightarrow \tau \tau$, $W \rightarrow \mu v$ 10 anti-k,, R=0.4 p_T^{jet} > 30 GeV 10⁴ $|y^{\text{jet}}| < 2.5$ 10³ 10² / Data - SHERPA 2.2 Pred.

≥3

≥4

≥6

Eur. Phys. J. C77 (2017) 361

Comparisons : Data unfolded – MCs

Data unfolded – Fixed order calculations corrected for non perturbative effects

Eur. Phys. J. C77 (2017) 361

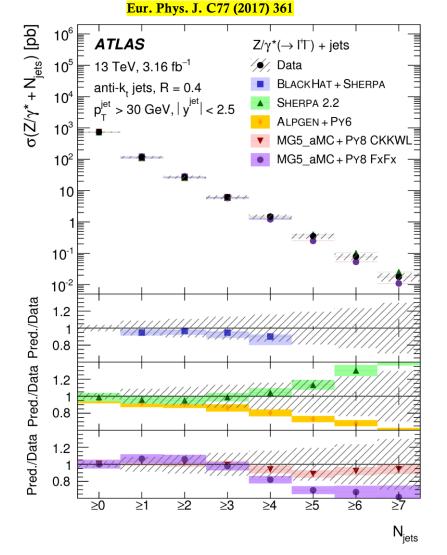
≥2

MC	ME order (V+N partons)	PDFs of ME	PS & UE
Sherpa v2.2	NLO up to 2 p +LO up to 4 p	NNPDF3.0nnlo	PS&UE: Sherpa MEPS@NLO merging
MadGraph CKKW-L (MadGraph5_aMC@NLO v2.2.2)	LO up to 4 p	NNPDF3.0nlo	PS&UE: Pythia v8.186 CKKW-L matching and merging
MadGraph FxFx (MadGraph5_aMC@NLO v2.3.3)	NLO up to 2 p	NNPDF2.310	PS&UE: Pythia v8.210 Merging with FxFx prescription
Powheg MiNLO	NLO up to 1 p	CT14nnlo	PS&UE: Pythia v8.186
Alpgen	LO up to 5 p	CTEQ6L1	PS&UE: Pythia v6.426 MLM matching and merging

ATL-PHYS-PUB-2017-006

> 0

Fixed Order Calc	ME order	PDFs
BlackHat+Sherpa	NLO up to 4p	CT14
N _{jetti} NNLO	NNLO	CT14


Z+jets: jet multiplicity

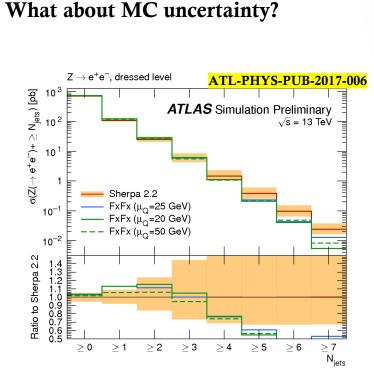
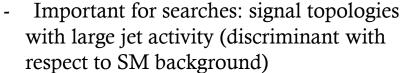
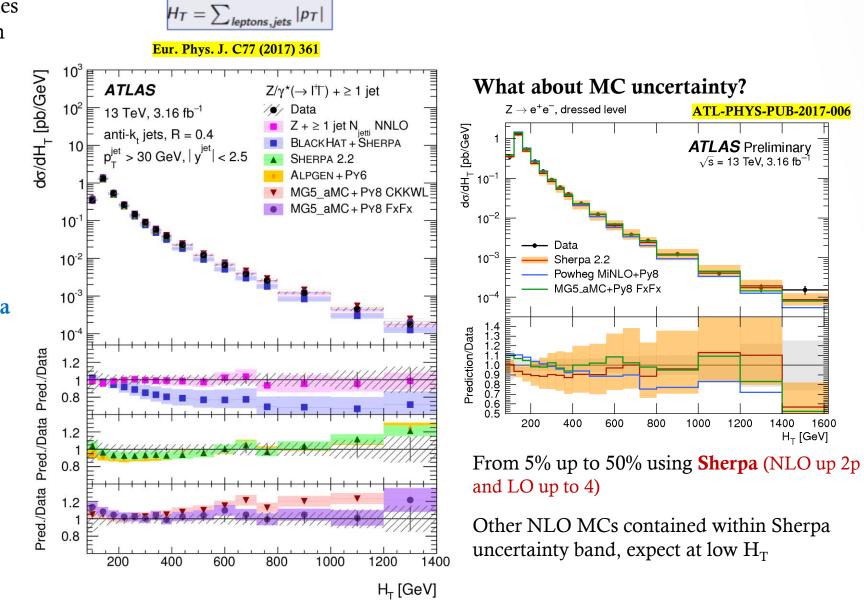


Figure of merit of goodness of QCD predictions and important discriminator with respect to the background in Higgs and searches


MadGraph+Pythia8 CKKWL

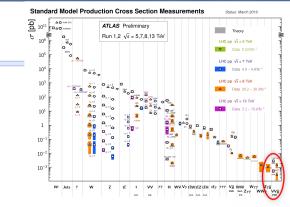
(LO up to 4p) shows good agreement with data, while Alpgen (LO up to 5p), Sherpa (NLO up to 2 and LO up to 4p) and NLO MadGraph+Pythia8 FxFx (NLO up to 2 p) show a systematic trend deviating from data at high jet multiplicities

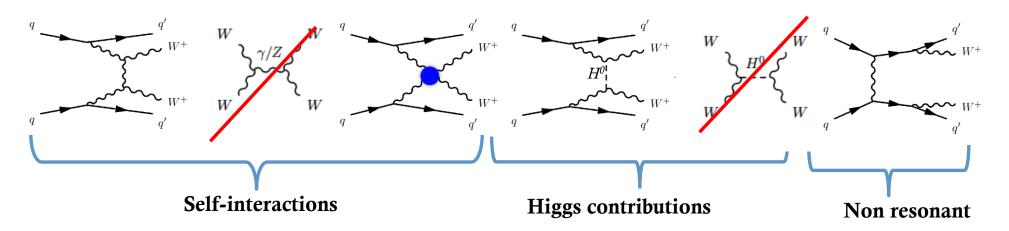

Sherpa uncertainty band (PDF +scale+ statistical unc) quite large at high jet multiplicity Z+jets: H_T

NLO calculations from BlackHat+Sherpa underestimate data

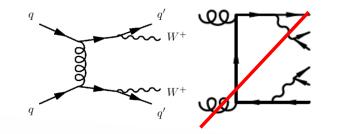
N_{jetti}NNLO recovers agreement by adding higher orders in pQCD

LO MadGraph+Pythia8 CKKWL over-predicts large H_T




Final states sensitive to Vector Boson Scattering (VBS) allow to:

- -Test the electroweak breaking symmetry (Higgs contribution)
- Study triple and quadratic gauge coupling


EW processes:

More info in the talk of Francesco Conventi (Tuesday)

QCD processes:

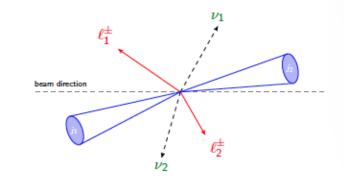
In W[±]W[±]jj (same sign) production some diagrams do not contribute:

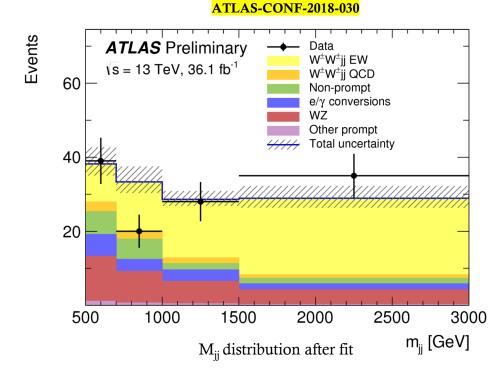
smaller cross-section than W⁺W⁻jj (opposite sign), but also large suppression of QCD processes → Golden channel to study VBS

W[±]W[±]+jets: measurement

Fiducial phase-space of cross-section measurement:

- -2 isolated same-sign leptons ($e^{\pm}e^{\pm}, \mu^{\pm}\mu^{\pm}, e^{\pm}\mu^{\pm}$) central and $p_T > 27$ GeV, $m_{11} > 20$ GeV, $\Delta R_{11} > 0.3$
- Missing $E_T > 30 \text{ GeV}$
- >=2 jets with $p_T^{j1} > 65 \text{ GeV}$, $p_T^{j2} > 35 \text{ GeV}$, $\Delta R_{lj} > 0.3$
- $|\Delta y_{jj}| > 2$
- m_{jj}> 500 GeV


Detector level selection very close to fiducial phase-space plus additional cuts to further reject background


EW signal extracted with fit on m_{ii} distribution

Observation of EW W[±]W[±]+jets by ATLAS@13 TeV

background-only hypothesis rejected with an observed significance of 6.9σ

W[±]W[±]+jets: MC configuration

Detailed study performed recently on several MC configurations - electroweak same-sign WWjj production

ATL-PHYS-PUB-2019-004

МС	ME order	PDFs of ME	PS & UE &Hadr Models
MadGraph (MadGraph5_aMC@NLO 2.6.2)	LO	NNPDF30nlo	Pythia8
	NLO		
	LO		Pythia 8, Dipole Recoil
	LO		Herwig7
	NLO		
Powheg	NLO	NNPDF30nlo	Pythia8
			Pythia 8, Dipole Recoil
			Herwig7
			Herwig7, Dipole Shower
Sherpa	LO (2 samples with different scales)	NNPDF30nnlo	Sherpa PS
	LO up to 1 additional parton		

Tested impact on different ME orders and PS schemes

W[±]W[±]+jets: cross-section

ATL-PHYS-PUB-2019-004

Leading-Order Configurations						
Sample name	σ [fb]					
MG5_AMC _LO+PY8	3.106 ± 0.015					
MG5_AMC _LO+PY8,Dipole Recoil	3.104 ± 0.015					
MG5_AMC _LO+H7	3.016 ± 0.020					
MG5_AMC _LO+H7.Dipole Shower	3.022 ± 0.017					
Sherpa_LO-0	2.615 ± 0.011					
Sherpa_LO-1	2.806 ± 0.046					

Leading-Order Multileg Con	figurations (0,1 additional parton)
Sample name	σ [fb]
Sherpa_CKKW	2.048 ± 0.013

Next-to-Leading	-Order Configurations
Sample name	σ [fb]
Powheg +PY8	$3.122 \pm 0.023^{+0.050}_{-0.040} \text{ (scale)} \pm 0.010 \text{ (pdf)}$
POWHEG +PY8,Dipole Recoil	3.082 ± 0.023
Powheg +H7	2.992 ± 0.026
POWHEG +H7,Dipole Shower	3.004 ± 0.026
MG5_AMC _NLO+H7, $\Gamma_{\rm resc}$	$3.304 \pm 0.033^{+0.050}_{-0.040} \text{ (scale)} \pm 0.010 \text{ (pdf)}$
MG5_AMC _NLO+PY8, $\Gamma_{\rm resc}$	3.345 ± 0.033

ATLAS-CONF-2018-030

<u>Data</u>

 $\sigma_{\sf fid} = 2.91^{+0.51}_{-0.47}$ (stat.) \pm 0.27(syst.) fb

Powheg (NLO) and all **MadGraph** (LO and NLO) configurations agree within 10% while **Sherpa** (LO and LO up to 1 additional p) predicts lower cross-sections

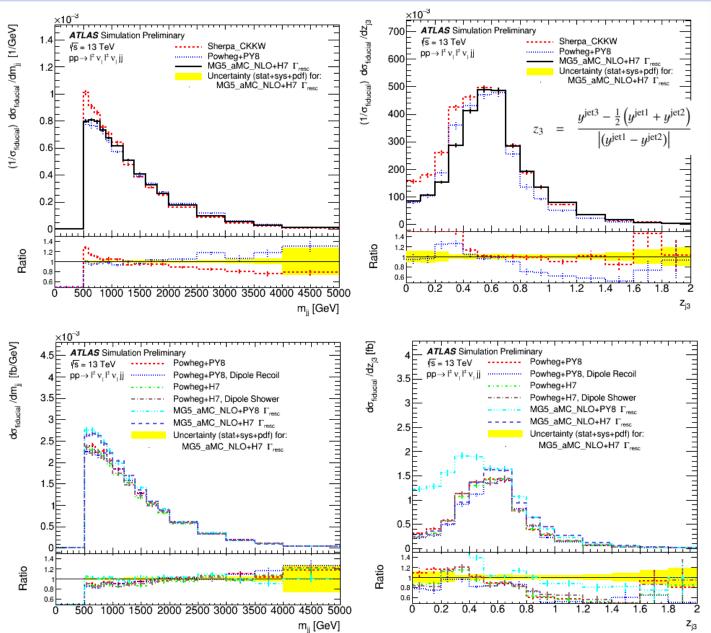
Difference of NLO calculations (MadGraph and Powheg)

of ~10%, larger than their own $\pm 2\%$ uncertainty (scale+PDF+ statistical unc), absence of the s-channel diagrams in the Powheg configuration

Impact of changes in the PS (Pythia8 vs Herwig7) is at most of 5%

Data in agreement with **Powheg** and **MadGraph** and about 1σ higher than **Sherpa**

18


W[±]W[±]+jets: differential distributions

ATL-PHYS-PUB-2019-004 NLO MCs (**Powheg** and **Madgraph**) produce harder m_{jj} spectra than LO MCs (**Sherpa**)

Differences between Sherpa and Powheg up to 40% at high m_{jj}

Zeppenfeld variable of 3rd jet found important difference among generators

Impact on PS choice studied for NLO Powheg and Madgraph: small effects for m_{jj} , while large effects for z_{j3}

Conclusions

Good MC modelling is central for producing high-profile physics results at LHC

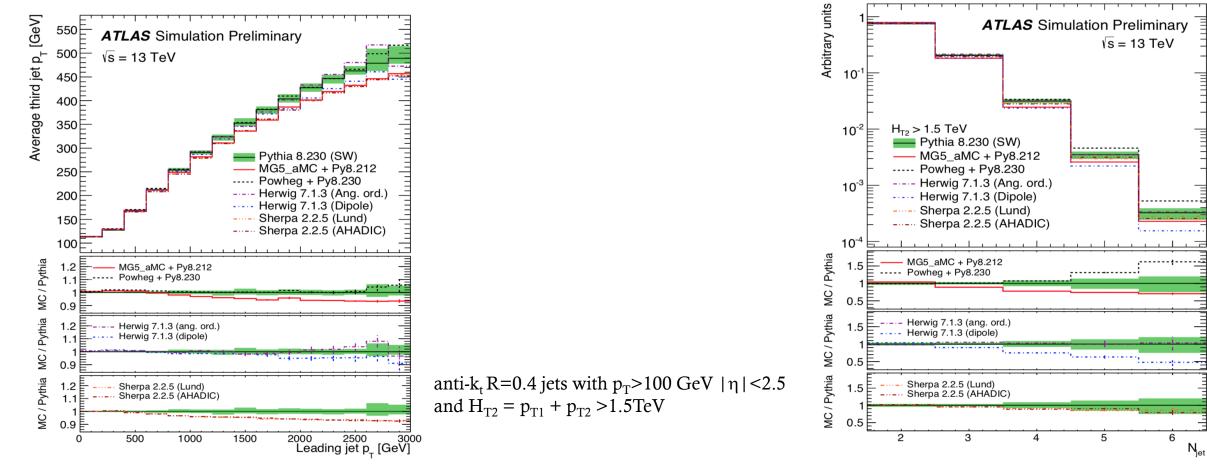
ATLAS Collaboration is investing a **huge effort** in studying several MC configurations for several physics processes, testing impact of several aspects: ME+PS matching, PS modelling, hadronisation modelling, with the aim of identifying **a baseline MC modelling as-good-as-possible and with a reasonable uncertainty**

 \rightarrow Best approach to push on new improvements on MC market (all our publications come with a Rivet routines to facilitate comparison of our measurements with latest MC setups)

Shown today 3 cases focused on jet modelling: multijets, V+jets in QCD domain and VV+jets in EW-dominated regions

In general found good agreement data-MC and among different MCs in intermediate phase-space regions, while in some cases important differences found in extreme phase-space regions (i.e. high m_{jj} and H_T) or in cases dominated by additional radiation (i.e. modelling of z_{j3} or high jet multiplicity)

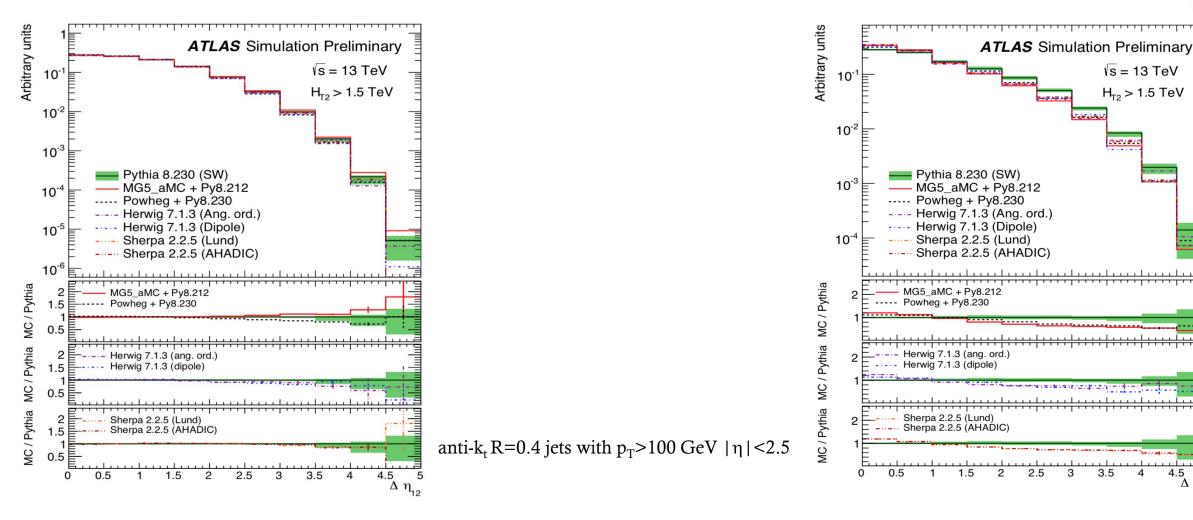
BACKUP


Multijet MC configuration

МС	ME order	PS & UE &Hadr Models	PDFs of ME	$\mu_R \ \mu_F$	PS&MPI tunes
Pythia 8.230	LO 2→2	p _T -ordered PS Lund model for Hadr	NNPDF23LO	$m_{T_3} \cdot m_{T_4} = \sqrt{(p_{\rm T}^2 + m_3^2)(p_T^2 + m_4^2)}$	A14 tune
MG5_aMC@NLO+Pythia8 (MadGraph5_aMC@NLO 2.3.3.1)	LO up to 4 part	PS&Hadr: Pythia8.212 Merging with CKKW-L prescriptions, merging scale=30 GeV	NNPDF30NLO	$m_T \text{ of } 2 \rightarrow 2 \text{ process}$	ATLAS A14 (NNPDF23LO)
Herwig 7.1.3 NLO dijets (Matchbox)		Angular-ordered PS Matching with MC@NLO-like algorithm Cluster model for Had	MMHT2014NLO	$p_{\rm T}$ leading jet	Dedicated tune
		Dipole PS Matching with MC@NLO-like algorithm Cluster model for Had		$p_{\rm T}$ leading jet	Dedicated tune
Sherpa 2.2.5 LO 2→2		p _T -ordered PS with CSS Sherpa Sherpa AHADIC model for Hadr based on cluster fragm	CT14NNLO		Dedicate tune
		p _T -ordered PS with CSS Sherpa Lund model for had with Pythia6.4			CT10 for MPI
Powheg-Box V2 r3480	NLO dijets	PS&MPI: Pythia 8.230	NNPDF30NLO	p _T of Born configuration	A14 tune (NNPDF23LO)

Multijet Event Topology

3rd jets from PS in Pythia8 and Sherpa (LO 2→2), from ME in Madgraph+Pythia8 (LO up to 4p), Herwig and Powheg+Pyhia8 (NLO)


MadGraph+Pythia8 and Sherpa predict softer emissions than Pythia8

Herwig7 with dipole PS predicts a smaller N_{jet} than **Pythia8**, **angular-ordered PS** and **Sherpa** in agreement with Pythia8 within PS unc. **MadGraph+Pythia8** in the middle between Pythia8 and **Herwig7 dipole PS**. **Powheg** predicts larger N_{jet} Multijet Event Topology

4.5

 $\Delta \eta_{_{23}}$

All MCs show a quite similar behaviour

 $\Delta \eta_{23}$ shows significant differences among generators: **Pythia8** predicts systematically larger $\Delta \eta_{23}$ than others, differences of up to 50%.

Multijet Event Shape

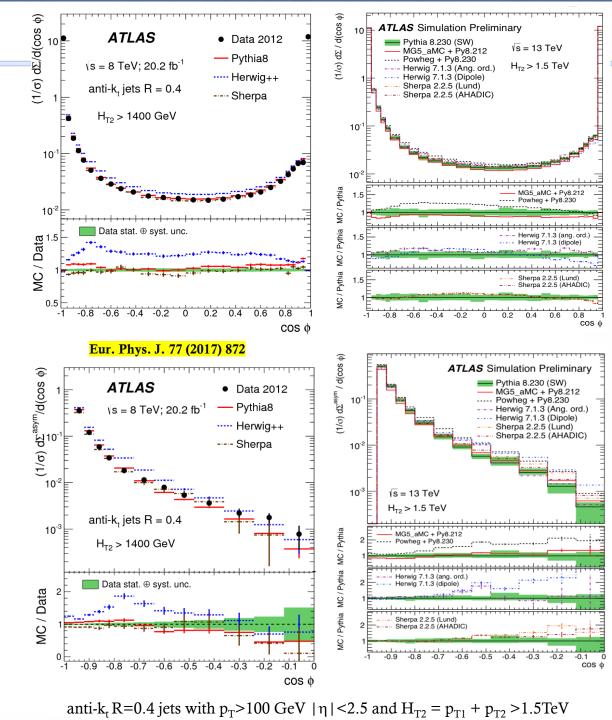
Event shapes sensitive to hard gluon radiation

Transverse Energy-Energy Correlation (TEEC) = transverse energy-weighted distribution of azimuthal difference between jet pairs

$$\frac{1}{\sigma} \frac{\mathrm{d}\Sigma}{\mathrm{d}\cos\phi} = \frac{1}{N} \sum_{A=1}^{N} \sum_{ij}^{N} \frac{E_{\mathrm{T}i}^{A} E_{\mathrm{T}j}^{A}}{\left(\sum_{k} E_{\mathrm{T}k}^{A}\right)^{2}} \delta(\cos\phi - \cos\phi_{ij})$$

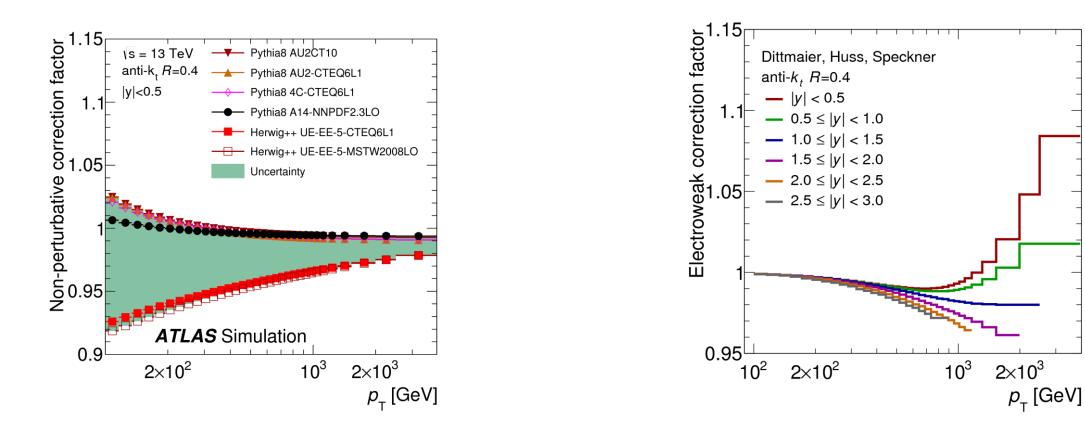
Asymmetry between the forward and backward part of TEEC (ATEEC)

 $\frac{1}{\sigma} \frac{\mathrm{d}\Sigma^{asym}}{\mathrm{d}\cos\phi} \equiv \left. \frac{1}{\sigma} \frac{\mathrm{d}\Sigma}{\mathrm{d}\cos\phi} \right|_{\phi} - \left. \frac{1}{\sigma} \frac{\mathrm{d}\Sigma}{\mathrm{d}\cos\phi} \right|_{\pi-\phi}$


TEEC and ATEEC used to get α_s at various Q-scale

Data-MC@8TeV:

Pythia8 (LO $2\rightarrow 2$) and **Sherpa 1.4** (LO up to 3 p) sufficient to provide a good description of the data, much better than **LO Herwig with** angular-ordered PS (v2.5.1)


Latest MC@13TeV

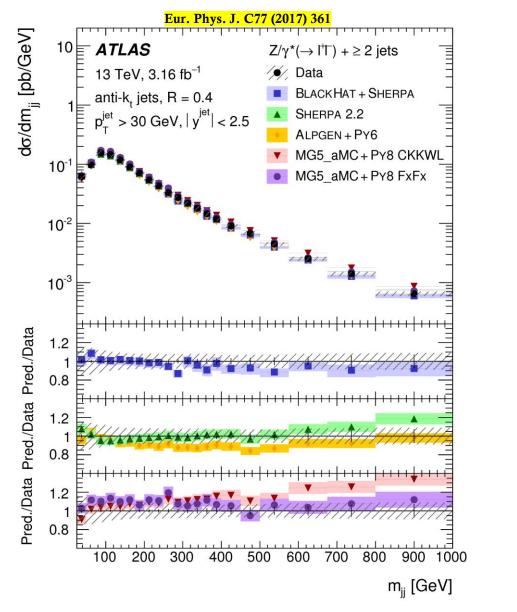
Herwig7 (NLO), Powheg+Pythia8 (NLO) and Sherpa (LO $2\rightarrow 2$) predict more large-angle radiation than Pythia8 (LO $2\rightarrow 2$), MadGraph+Pythia8 (LO up to 4 p) shows less activity in the central region

Inclusive jet cross-section

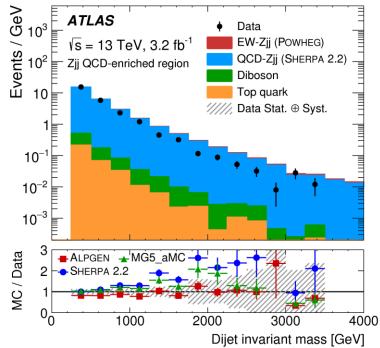
	CTEQ6L1 [67]	CTEQ6L1 [67]	MSTW2008LO [68]	CT10	NNPDF2.3LO	NNPDF2.3LO	CTEQ6L1 [67]
Pythia 8	4C [69]	AU2 [70]	A14 [30]	AU2 [70]	MONASH [71]	A14 [30]	A14 [30]
Herwig++	UE-EE-5 [72, 73]	UE-EE-4 [72, 73]	UE-EE-5 [72, 73]				
					26	Default	

Z+jets

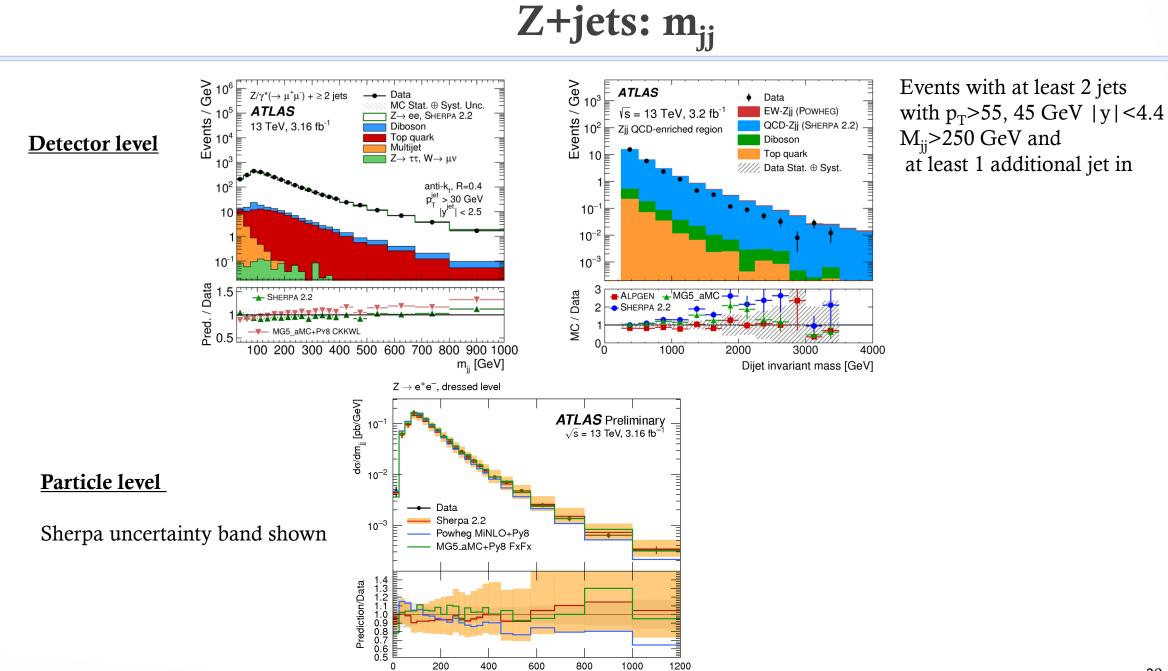
520


MC	ME order (V+N partons)	PDFs of ME	PS & UE	PS &UE tunes
Sherpa v2.2	NLO up to 2 p +LO up to 4 p	NNPDF3.0nnlo	PS&UE: Sherpa MEPS@NLO merging Matching scale= 20 GeV	Dedicated Sherpa tune
MadGraph CKKW-L (MadGraph5_aMC@NLO v2.2.2)	LO up to 4 p	NNPDF3.0nlo	PS&UE: Pythia v8.186 CKKW-L matching and merging Merging scale= 30 GeV	A14 tune (NNPDF2310)
MadGraph FxFx (MadGraph5_aMC@NLO v2.3.3)	NLO up to 2 p	NNPDF2.31o	PS&UE: Pythia v8.210 Merging with FxFx prescription Merging scale = 25 GeV	A14 tune (NNPDF2.3lo)
Powheg MiNLO	NLO up to 1 p	CT14nnlo	PS&UE: Pythia v8.186	AZNLO tune (CTEQ6 L1)
Alpgen	LO up to 5 p	CTEQ6L1	PS&UE: Pythia v6.426 MLM matching and merging Matching scale= 20 GeV	Perugia2011C

Z+jets: m_{jj}



Quite good modelling at low values, in the high mass range LO MadGraph+Pythia8 CKKWL predicts an harder m_{ii}

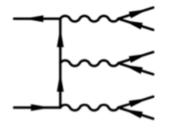

Similar trend also for **NLO Sherpa** exploring up to very high mass range and up to large rapidity separation

Phys Lett B 775 (2017) 206

Events with at least 2 jets with $p_T > 55$, 45 GeV $|y| < 4.4 M_{jj} > 250 GeV$ and at least 1 additional jet in the gap

m_{ii} [GeV]

$W \pm W \pm +jets$



Leading-Order Configurations				
Sample name	Contributions	μ -scale	Shower	Tune
MG5_AMC _LO+PY8	s,t,u	dynamic scale= $\sqrt{p_{\rm T}^{\rm jet1} p_{\rm T}^{\rm jet2}}$	Рутніа 8.235	A14
MG5_AMC _LO+PY8, Dipole Recoil	s,t,u	dynamic scale= $\sqrt{p_{\rm T}^{\rm jet1} p_{\rm T}^{\rm jet2}}$	Рутніа 8.235	A14, Dipole Recoil
$MG5_AMC _LO+H7$	s,t,u	dynamic scale= $\sqrt{p_{\rm T}^{\rm jet1} p_{\rm T}^{\rm jet2}}$	Herwig 7.1.3	H7.1-Default
MG5_AMC _LO+H7, Dipole Shower	s,t,u	dynamic scale= $\sqrt{p_{\rm T}^{\rm jet1} p_{\rm T}^{\rm jet2}}$	Herwig 7.1.3	H7.1-Default, Dipole Shower
Sherpa_LO-0	s, t, u	dynamic scale $=$	Sherpa v2.2.2	default
		diboson invariant mass		
Sherpa_LO-1	s,t,u	dynamic scale= $\sqrt{p_{\rm T}^{\rm jet1} p_{\rm T}^{\rm jet2}}$	Sherpa v2.2.2	default

Leading-Order Multileg Configurations (0,1 additional parton)				
Sample name	Contributions	μ -scale	Shower	Tune
Sherpa_CKKW	s,t,u	dynamic scale $=$	Sherpa v2.2.2	default
		diboson invariant mass		

Next-to-Leading-Order Configurations				
Sample name	Contributions	μ -scale	Shower	Tune
Powheg +PY8	t, u	fixed scale= m_W	Рутніа 8.212	AZNLO
POWHEG +PY8, Dipole Recoil	t, u	fixed scale = m_W	Рутніа 8.235	AZNLO, Dipole Recoil
Powheg $+H7$	t, u	fixed scale = m_W	Herwig 7.1.3	H7.1-Default
POWHEG $+H7$, Dipole Shower	t, u	fixed scale m_W	Herwig 7.1.3	H7.1-Default, Dipole Shower
MG5_AMC _NLO+H7, $\Gamma_{\rm resc}$	s,t,u	dynamic scale= $\sqrt{p_{\rm T}^{\rm jet1} p_{\rm T}^{\rm jet2}}$	Herwig 7.1.3	H7.1-Default
MG5_AMC _NLO+PY8, $\Gamma_{\rm resc}$	s,t,u	dynamic scale= $\sqrt{p_{\rm T}^{\rm jet1} p_{\rm T}^{\rm jet2}}$	Рутніа 8.235	A14

Example of missing processes in Powheg:

W[±]W[±]+jets: cross-section

N/	

<u>C</u>	ATL-PHYS-PUB-2019-004	
Leading-Order Configurations		
Sample name	σ [fb]	
MG5_AMC _LO+PY8	3.106 ± 0.015	
MG5_AMC _LO+PY8,Dipole Recoil	3.104 ± 0.015	
MG5_AMC _LO+H7	3.016 ± 0.020	
MG5_AMC _LO+H7.Dipole Shower	3.022 ± 0.017	
Sherpa_LO-0	2.615 ± 0.011	
Sherpa_LO-1	2.806 ± 0.046	

Leading-Order Multileg Configurations (0,1 additional parton)		
Sample name	σ [fb]	
Sherpa_CKKW	2.048 ± 0.013	

Next-to-Leading-Order Configurations			
Sample name	σ [fb]		
Powheg +PY8	$3.122 \pm 0.023^{+0.050}_{-0.040} \text{ (scale)} \pm 0.010 \text{ (pdf)}$		
POWHEG +PY8,Dipole Recoil	3.082 ± 0.023		
Powheg +H7	2.992 ± 0.026		
POWHEG +H7,Dipole Shower	3.004 ± 0.026		
MG5_AMC _NLO+H7, $\Gamma_{\rm resc}$	$3.304 \pm 0.033^{+0.050}_{-0.040} \text{ (scale)} \pm 0.010 \text{ (pdf)}$		
MG5_AMC _NLO+PY8, $\Gamma_{\rm resc}$	3.345 ± 0.033		

ATLAS-CONF-2018-030

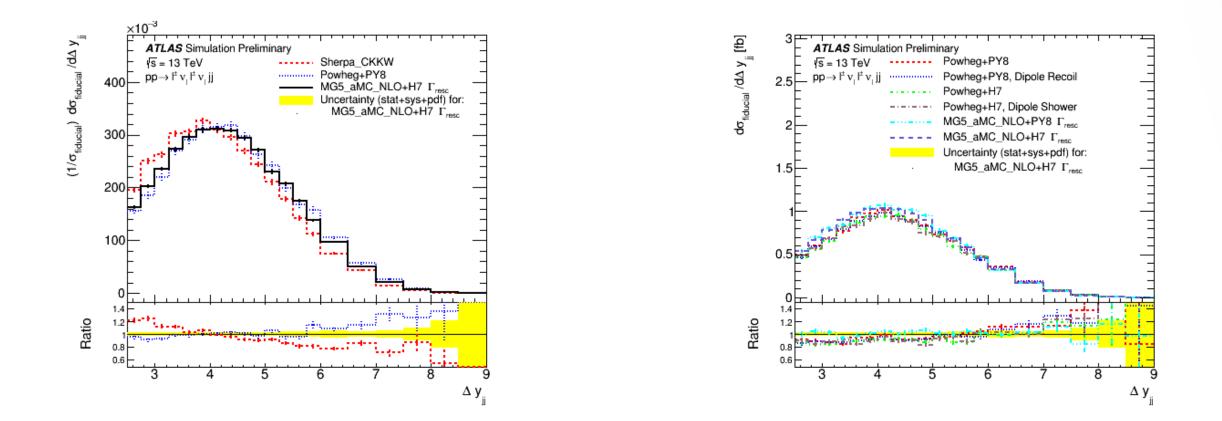
<u>Data</u>

 $\sigma_{\rm fid} = 2.91^{+0.51}_{-0.47}$ (stat.) \pm 0.27(syst.) fb

Powheg (NLO) and all **MadGraph (LO and NLO)** configurations agree within 10% while **Sherpa (LO and LO up to 1 additional p.)** predicts lower cross-sections.

Sherpa LO: central emission excess from PS due to not optimal color flow setup; Sherpa LO up to 1 add. part. (CKKW): fixed central emission, but cross-section reduction from suppression of spuriously large Sudakov factors

Difference of NLO calculations (MadGraph and **Powheg)** of ~10%, larger than their own $\pm 2\%$ uncertainty (scale+PDF+ statistical unc), absence of the s-channel diagrams in the Powheg configuration.


Impact of changes in the PS (Pythia8 vs Herwig7) is at most of 5%.

Data includes $W^{\pm}W^{\pm}jj$ electroweak plus interference with $W^{\pm}W^{\pm}jj$ strong, predictions not include interference with the strong production (+6%) and NLO EW corrections (-16%)

Data in agreement with **Powheg** and **MadGraph** and about 1σ higher than **Sherpa**

 $W \pm W \pm +jets: \Delta y_{jj}$

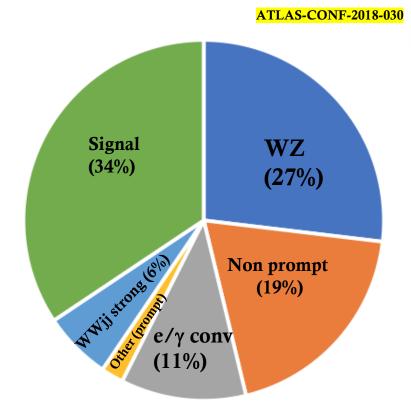
Sherpa predicts a slightly narrower Δy_{ii} distribution difference up to 20% around $\Delta y_{ii} = 2.0$ (fiducial cut)

W[±]W[±]jj: Signal & Background

Further background reduction (applied only at detector level):

-additional leptons veto events \rightarrow reduce background with prompt leptons -Z veto in ee final state \rightarrow reduce Z+jets background from charge mis-ID -veto events containing b-jets \rightarrow reduce ttbar

<u>Non-prompt lepton backgrounds (</u>W+jets, ttbar (semi-leptonic), dijet) with data-driven technique in control region with a 50-90% uncertainty, dominant one pre-fit


Electron charge mis-identification & prompt photon conversions:

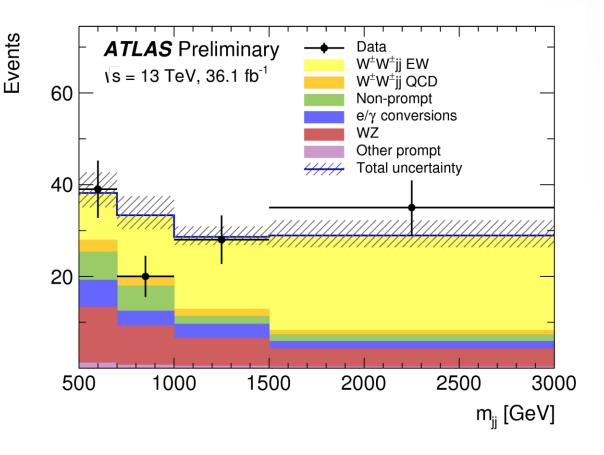
- Electron charge mis-ID (Z+jets, W⁺W⁻, ttbar (di-leptonic)) with data-driven technique
- Prompt photon conversion: Wy from MC with normalization from control region

Prompt backgrounds:

WZ from MC with normalization from a trilepton control region strong $W^{\pm}W^{\pm}jj$ subtracted as background.

A total of 122 candidate events is observed for a background expectation of 78 ± 15 events before the fit

Expected Signal and background composition before fit W[±]W[±]jj: the observation


Analysis performed in **six channels:** e^+e^+ , $\mu^+\mu^+$, $e^+\mu^+$ and e^-e^- , $\mu^-\mu^-$, $e^-\mu^-$

Signal extracted in a **binned fit** to m_{jj} distributions (4 bins) in signal region ($m_{jj} > 500$ GeV) and control regions ($200 < m_{jj} < 500$ GeV) dominated by WZ and non-prompt lepton background

The background-only hypothesis is rejected with an observed significance of 6.9σ

Measured signal strength parameter:

$$\mu = 1.45^{+0.25}_{-0.24}$$
(stat.) $^{+0.13}_{-0.14}$ (sys.)

