ggH rejection for double Higgs search at LHC

Anna Ershova supervisors: Maxime Gouzevitch, Thong Nguyen

EP-CMG Department

5 Aug 2019

Motivation

HH prodiction

background

• ttH

• ggH

leading HH $ightarrow \gamma \gamma ar{
m bb}$ signal

Prerequisites

Strategy

- find variables which are different for signal and background samples
- try TMVA BDT to understand perspective improvements
- try more advanced DNN algorithm
- use bayessian optimization to tune DNN parameters

Used tools

K Keras

Variables used for training

- subleadingPhoton_pt
- leadingPhoton_pt
- subleadingPhoton_eta
- leadingPhoton_eta
- subleadingJet_pt
- leadingJet_pt
- subleadingJet_eta
- leadingJet_eta

- leadingJet_DeepCSV
- PhoJetMinDr
- subleadingJet_DeepCSV
- dijetCandidatePtOverdiHiggsM
- absCosTheta_bb
- HHbbggMVA
- sigmaMJets
- PhoJetotherDr

Where HHbbggMVA is probability of the signal event, PhoJetMinDr – distance between closest jets, PhoJetotherDr – distance between another pair of jets, (sub)leadingJet_DeepCSV – btagging score of that jet

Signal and background variables

Anna Ershova (MIPT)

Anna Ershova (MIPT)

Bejected backgroun 8.0 Bejected backgroun

0.5F

0.4F

0.3

DNN perfomance

Neural network performance

4			L
	Threshold	Signal Efficiency	Background Contamination
	0.1320 0.3566 0.4743 0.6567 0.9559 0.9926	0.9802 0.9502 0.9352 0.9002 0.7001 0.5001	0.3512 0.1543 0.1126 0.0673 0.0131 0.0042
2	0.9904	0.5001	0.0011

- best hidden layers = 2
- best initial nodes = 88
- best dropout = 0.730104980246572
- best batch size = 2184
- best learning rate = 1.9989431770225823e-05

- variables distinguishing signal and background events were selected
- Deep Neuron Network was trained
- Parameters of the DNN were optimized using Bayessian optimisation