Type: Oral Presentation

Constraining r-process nucleosynthesis using 129 I and 247 Cm in the early Solar system

A recent study by Côté et al. (2021) has shown that ratio of the observed abundances of short-lived radioisotopes 129 I and 247 Cm in the early solar system (ESS), that are almost exclusively produced by r-process, can be used to directly constrain the "last" r-process source that contributed before the formation of the Solar system due to fact that these two isotopes have almost identical half-lives. This conclusion is critically based on the result that the 129 I and 247 Cm in the ESS come from one single r-process event. We study the evolution of 129 I and 247 Cm along with reference isotopes 127 I and 235 U at the Solar location using the turbulent gas diffusion formalism. We find that when 2-3 different r-process sources that are equally frequent but have distinct 129 I/ 247 Cm production ratios are considered, the 129 I and 247 Cm in the ESS do not come entirely from a single major event but get contributions from at least two more minor contributors. This has a dramatic effect on the evolution of the 129 I/ 247 Cm ratio, such that the measured ESS value in meteorites does not necessarily correspond to that of the "last" major r-process event and consequently cannot be used to constrain it. We also find that the requirement of concordance of the observed 129 I/ 127 I and 247 Cm/ 235 U ratio in the ESS has a major impact on the distribution of the 129 I/ 247 Cm ratio in the ESS. We find that when the concordance criteria is taken into account, important constraints on the properties of r-process sources that were operating during the formation of the Solar system can still be made using the observed value of 129 I/ 247 Cm ratio in the ESS.

Length of presentation requested

Oral presentation: 17 min + 3 min questions

Please select between one and three keywords related to your abstract

Chemical Evolution

2nd keyword (optional)

Cosmic Radioactive Deposits in Solar-System Samples

3rd keyword (optional)

Chemical Evolution: the Milky Way

Primary author: Dr BANERJEE, Projjwal (Indian Institute of Technology Palakkad)

Co-authors: Dr WU, Meng-Ru (Institute of Physics, Academia Sinica, Taipei, Taiwan); Ms S K, Jeena (Indian

Institute of Technology Palakkad)

Presenter: Dr BANERJEE, Projjwal (Indian Institute of Technology Palakkad)