r-Process Radioisotopes from Near-Earth Supernovae and Kilonovae

The astrophysical sites where r-process elements are synthesized remain mysterious: it is clear that neutronstar-mergers (kilonovae, KNe) contribute, and some classes of core-collapse supernovae (SNe) are also possible sources of at least the lighter r-process species. The discovery of 60 Fe on the Earth and Moon implies that one or more astrophysical explosions have occurred near the Earth within the last few Million years (Myr), probably SNe. Intriguingly, ²⁴⁴Pu has now been detected, mostly overlapping with ⁶⁰Fe pulses. However, the ²⁴⁴Pu flux may extend to before 12Myr ago, pointing to a different origin. Motivated by these observations and difficulties for r-process nucleosynthesis in SN models, we propose that ejecta from a KN enriched the giant molecular cloud that gave rise to the Local Bubble where the Sun resides. Accelerator Mass Spectrometry (AMS) measurements of 244 Pu and searches for other live isotopes could probe the origins of the r-process and the history of the solar neighborhood, including triggers for mass extinctions, e.g., at the end of the Devonian epoch, motivating the calculations of the abundances of live r-process radioisotopes produced in SNe and KNe that we present here. Given the presence of 244 Pu, other *r*-process species such as 93 Zr, 107 Pd, 129 I, 135 Cs, ¹⁸²Hf, ²³⁶U, ²³⁷Np and ²⁴⁷Cm should be present. Their abundances and well-resolved time histories could distinguish between SN and KN scenarios, and we discuss prospects for their detection in deep-ocean deposits and lunar regolith. We show that AMS ¹²⁹I measurements in Fe-Mn crusts already constrain a possible nearby KN scenario. Thus, we urge searches for r-process radioisotopes in deep-ocean Fe-Mn crusts, and in the lunar regolith samples brought to Earth recently by the Chang'e-5 lunar mission and upcoming missions including Artemis.

Length of presentation requested

Oral presentation: 17 min + 3 min questions

Please select between one and three keywords related to your abstract

Nucleosynthesis

2nd keyword (optional)

Stellar explosions and mergers - theory

3rd keyword (optional)

Nuclear physics - experimental

Primary authors: WANG, Xilu (Institute of High Energy Physics, Chinese Academy of Sciences); CLARK, Adam; ELLIS, John (CERN); ERTEL, Adrienne; FIELDS, Brian (University of Illinois); FRY, Brian; LIU, Zhenghai; MILLER, Jesse; SURMAN, Rebecca (University of Notre Dame)

Presenter: WANG, Xilu (Institute of High Energy Physics, Chinese Academy of Sciences)