Spectroscopy of 48 Cr by the 50 Cr(p, t) 48 Cr reaction

The radioactive nucleus ⁴⁴Ti is thought to be produced in Core-Collapse Supernovae (CCSNe) with the amount produced being sensitive to internal dynamics of the explosion. As such, ⁴⁴Ti is a potential diagnostic tool for understanding the behaviour of these stellar explosions.

The amount of ⁴⁴Ti produced depends not only on the production reactions but also on the destruction reactions, most notably the ⁴⁴Ti(α , p)⁴⁷V reaction which proceeds through states in the compound nucleus ⁴⁸Cr. This reaction is usually treated through statistical models (see, for example, the recent study by Chipps and collaborators Phys. Rev. C 102, 035806) but it is not clear that this is valid given the limitations of the levels which can be populated in ⁴⁴Ti+ α fusion (natural parity, isoscalar) and the influence of α -particle clustering behaviour on other α -particle induced reactions.

Spectroscopy in the Gamow Window of the ⁴⁴Ti(α , p)⁴⁷V reaction has been performed using the ⁵⁰Cr(p, t)⁴⁸Cr reaction with the K600 magnetic spectrometer at iThemba LABS in South Africa. A number of excited states have been observed, many for the first time, giving insights into the validity of statistical models for the ⁴⁴Ti(α , p)\$⁴⁷V reaction.

Length of presentation requested

Oral presentation: 8 min + 2 min questions (Poster-type talk)

Please select between one and three keywords related to your abstract

Nuclear physics - experimental

2nd keyword (optional)

3rd keyword (optional)

 Primary authors:
 ADSLEY, Philip (Texas A&M University);
 Mr BINDA, Sifundo (WITS/iTL)

 Presenter:
 ADSLEY, Philip (Texas A&M University)