Contribution ID: 75

Beta-Delayed Neutron-Emission Probabilities of 20 neutron-rich Ag, Cd, In and Sn isotopes: Impacts on the second r-process peak formation

V. H. Phong^{1,2}, S. Nishimura¹, G. Lorusso^{1,3,4}, T. Davinson⁵, A. Estrade⁶, O. Hall⁵, T. Kawano⁷, J. Liu^{1,8}, F. Montes⁹, N. Nishimura^{10,1}, J. Agramunt¹¹, D.S. Ahn^{1,12}, A. Algora¹¹, J.M. Allmond¹³, H. Baba¹, S. Bae¹², N.T. Brewer^{13,14}, C.G. Bruno⁵, R. Caballero-Folch¹⁵, F. Calvino¹⁶, P.J. Coleman-Smith¹⁷, G. Cortes¹⁶, I. Dillmann^{15,18}, C. Domingo-Pardo¹¹, A. Fijalkowska¹⁹, N. Fukuda¹, S. Go¹, C.J. Griffin⁵, R. Grzywacz¹⁴, J. Ha^{1,20}, L.J. Harkness-Brennan²¹, T. Isobe¹, D. Kahl^{5,22}, L.H. Khiem^{23,24}, G.G. Kiss^{1,25}, A. Korgul¹⁹, S. Kubono¹, M. Labiche¹⁷, I. Lazarus¹⁷, J. Liang²⁶, Z. Liu^{27,28}, K. Matsui^{1,29}, K. Miernik¹⁹, B. Moon¹², A.I. Morales¹¹, P. Morrall¹⁷, N. Nepal⁶, R.D. Page²¹, M. Piersa-Silkowska¹⁹, V.F.E. Pucknell¹⁷, B. C. Rasco¹³, B. Rubio¹¹, K.P. Rykaczewski¹³, H. Sakurai^{1,29}, Y. Shimizu¹, D.W. Stracener¹³, T. Sumikama¹, H. Suzuki¹, J.L. Tain¹¹, H. Takeda¹, A. Tarifeno-Saldivia¹⁶, A. Tolosa-Delgado¹¹, M. Wolinska-Cichocka³⁰, P.J. Woods⁵, and R. Yokoyama¹⁴

¹RIKEN Nishina Center, Japan, ²VNU University of Science, Vietnam, ³National Physical Laboratory, UK, ⁴University of Surrey, UK, ⁵University of Edinburgh, UK, ⁶Central Michigan University, USA, ⁷Los Alamos National Laboratory, USA, ⁸University of Hong Kong, Hong Kong, ⁹National Superconducting Cyclotron Laboratory, USA, ¹⁰Cluster for Pioneering Research, RIKEN, Japan, ¹¹Instituto de F´sica Corpuscular, Spain, ¹²Institute for Basic Science, Republic of Korea, ¹³Oak Ridge National Laboratory, USA, ¹⁴University of Tennessee, Knoxville, TN, USA, ¹⁵TRIUMF, Canada, ¹⁶Universitat Politecnica de Catalunya, Spain, ¹⁷STFC Daresbury Laboratory, UK, ¹⁸University of Victoria, Canada, ¹⁹University of Warsaw, Poland, ²⁰Seoul National University, Republic of Korea, ²¹University of Liverpool, UK, ²²IFIN-HH, Romania, ²³Institute of Physics, Vietnam, ²⁴Graduate University of Science and Technology, Vietnam, ²⁵MTA Atomki, Hungary, ²⁶McMaster University, Canada, ²⁷Institute of Modern Physics, CAS, China, ²⁸School of Nuclear Science and Technology, CAS, China, ²⁹University of Tokyo, Japan, ³⁰HIL, University of Warsaw, Poland

Nuclear physics imprints on the r-process nucleosynthesis manifest themself in the so-called r-process peaks. In particular, the second r-process peak around mass number A=130 is thought to be formed robustly by the accumulation of nuclear matter along the neutron magic number N=82, due to the nuclear closed-shell effect. Therefore, experimental data on nuclear properties in this nuclear region will provide important constraints for a better understanding of the formation of the peak. Using the BRIKEN setup at RIKEN, the β -delayed one- and two-neutron branching ratios (P_{1n} and P_{2n} values) of 20 neutron-rich nuclei ^{129–131}Ag, ^{131–134}Cd, ^{132–136}In, and ^{134–138}Sn has been measured. Our results offer, for the first time, a systematic picture of the evolution of (P_{1n} and P_{2n} values crossing the N=82 and Z=50 shell closure in daughter nuclei, and provide stringent benchmarks for the newly developed global theoretical calculations of β -decay properties. The impact of measured P_{1n} and P_{2n} values on the formation of the second r-process peak has been studied. It was found that it is significant in shaping odd-even abundance pattern and it directly contributes to the β -decay flowing to the stable isotopes of Te and Cs.

Length of presentation requested

Oral presentation: 17 min + 3 min questions

Please select between one and three keywords related to your abstract

Nuclear physics - experimental

2nd keyword (optional)

Nucleosynthesis

3rd keyword (optional)

Primary author: VI, Phong

Presenter: VI, Phong