Hexagonal Pixel Multi-element Germanium Detector For Synchrotron Applications

imulation of Detector Performance

T. Saleem^{1,*}, S. Chatterji², R. Crook², G. Dennis², F.J. Iguaz¹, N. Tartoni², F. Orsini¹

- ^{1.} SOLEIL Synchrotron, L'Orme des Merisiers, Saint-Aubin BP 48, Gif Sur Yvette, 91190 France
- ^{2.} Diamond Light Source Ltd., Didcot OX11 0DE, U.K.

Introduction

Performance of fluorescence detectors is one of the major limitations of the XAS experiment at synchrotron facilities. Hence, Technological developments are mandatory:

- **♦** To measure more challenging samples
- ◆ To cope with the very high photon flux and input count rate of current/future light sources.
- → A performance study of potential configurations of a monolithic multi-element germanium detector is presented.

Hexagonal Pixel HPGe Detector (DLS-SOLEIL prototype)

A new generation of monolithic multi-element detectors with hexagonal pixels are proposed for XAS experiments:

- > Maximize the compactness and granularity of the traditional detectors.
- > New monolithic Ge sensor composed of 19 hexagonal pixels of 2 mm inner diameter → (DLS-SOLEIL) prototype.
- > Review of front-end electronics and design of a new carrier board.

Fig. 2 : The segmented Ge crystal in the crystal holder and the current printed circuit board (PCB).

Simulation Flow & Detector Performance

Detector Layout :

The germanium sensor under study is composed of :

- High purity germanium crystal, with two implanted regions.
- p-type doped collection electrode (pixel region) at the backside
- n-type doped region with a higher doping concentration at the frontside.
- An operational bias voltage of +200 V is applied at the frontside, and the pixel electrode is grounded.

Fig. 3: Schematic representation of the germanium sensor under study.

<u>Simulation Flow:</u>

A simulation chain combining :

- 3D electrostatic field, COMSOL Multiphysics® simulation.
- Allpix-Squared simulation

Fig. 4: 3D electric field map, simulated using COMSOL Multiphysics®, of the hexagonal pixel multi-element germanium detector under study.

COMSOL Simulation :

- → Visualization of simulated electric field map in 3D for the hexagonal pixel design.
- \rightarrow 3D electric field map is exported to allpix-squared framework.

<u>Detector Modelling & Charge Sharing Effect :</u>

A simulation of the multi-element germanium detector under study has been performed using the allpix-squared framework.

Beam direction	Perpendicular (z-axis)
Beam Shape	Square
Beam Size	12 mm x 12 mm
Beam Energy	5-80 keV
Electric Field	Non-linear (COMSOL)
Hexagon side [mm]	1.8
Inter-pixel gap [μm]	95
Sensor Thickness [mm]	4
Active area* [mm²]	~ 11.5 x 11.5

Table 1: Allpix-squared simulation parameter.

Fig. 5: Detector Geometry, Geant4 simulation.

The cluster size map shows:

- Increase of charge sharing at the pixel corners and towards the pixel edges
- About 13% of the events are shared between two pixels (cluster size =2)
- Less than 2% of the events has a cluster size >=3.

Fig. 6: Cluster size spatial distribution of the multi-element germanium detector under study.

Fig. 7: Pixel charge scan between two adjacent pixels.

- → Pixel charge scan along a horizontal cut-line crossing the middle of a pixel row is fiited using a Gaussian fit.
- → Distance of charge sharing
 which is about 105 µm in
 agreement with measurments
 performed at DLS.

Detector Efficiency

The detector performance has been studied at different beam energies between 5 and 80 keV.

Fig. 8: The energy spectrum for a photon beam of energy 28 keV shows the signal and background Rol regions defined for this study.

with hexagonal pixel shape
(blue curve) shows a
significant increase of the S/B
ratio at all energies compared
to a conventional squared pixel
shape design (red curve).

→ The new detector design

Fig. 9: Signal-to-Background (S/B) ratio as a function of incident photon beam energy.

→ The new hexagonal pixel design (blue curve) shows a slightly higher percentage of shared events compared to a conventional squared pixel design (red curve).

incident photon beam energy.

CONCLUSION

- 1. Complete simulation chain combining allpix-squared simulation with 3D electrostatic field simulation performed with COMSOL Multiphysics®.
- 2. Performance of the DLS-SOLEIL multi-element Ge detector prototype with hexagonal pixel shape of 2 mm inner diameter has been simulated.
- 3. Hexagonal design allows for a less extensive charge sharing (i.e. cluster size 3 instead of 4) compared to a conventional squared design.
- 4. Preliminary results show that hexagonal pixel design would be beneficial for future applications as it significantly increases S/B ratio in comparison with a conventional squared pixel design.
- 5. This simulation model will be used in studying variant hexagonal-shaped germanium detector and its sensitivity for future applications

References:

- [1] N. Tartoni et al., "Hexagonal Pad Multichannel Ge X-ray Spectroscopy Detector Demonstrator: Comprehensive Characterization", IEEE Transaction on Nuclear Science, vol. 67, NO. 8, (2020)
- [2] T. Saleem et al., "Simulation of Multi-element Germanium Sensors for Synchrotron Radiation XAFS experiments using Allpix 2 framework", Arxiv.
- [3] S. Spannagel et al., "Allpix 2 : A modular simulation for silicon detectors", Nucl. Instr. Meth. A 910, 165-172 (2018) [4] Allpix-Squared Code : https://zenodo.org/record/4494619