



# Experimental study of the adaptive gain feature for improved position-sensitive ion spectroscopy with Timepix2

Benedikt Bergmann<sup>1</sup>, Petr Smolyanskiy<sup>1</sup>, Petr Burian<sup>1,2</sup>, Stanislav Pospisil<sup>1</sup>, Jan Jakubek<sup>3</sup>

- 1) Institute of Experimental and Applied Physics, Czech Technical University in Prague 2) Faculty of Electrical Engineering, University of West Bohemia
- 3) Advacam s.r.o, Advacam Oy.

benedikt.bergmann@utef.cvut.cz

# Motivation – Timepix applications

- Radiation field characterization and dosimetry in
  - Space application
  - Nuclear and particle physics experiment
  - Hadron therapy
- Imaging
  - X-rays
  - Neutrons
  - Alphas





# Timepix2 – improved capabilities



256 x 256 pixels Pixel pitch 55 μm Frame-based readout scheme Silicon sensor of 300 µm

- er frame

y range is increased due to





Wong et al., "Introducing Timepix2, a frame-based pixel detector readout ASIC measuring energy deposition and arrival time", Radiation Measurements 131, 2020.

# Calibrations with photons

#### **Energy calibration with photons:**

# Per-pixel ToT calibration results







- Katherine readout system used for detector control
- Calibration XRF from Cu, Cd, and gammas from <sup>241</sup>Am with single pixel clusters

#### **Energy calibration with photons:**

# Per-pixel ToT calibration results - homogeniety





# Determination of the pixels' high energy behavior

#### Measurement at Van-de-Graaff:

## Measurement setup





- Tunable source of monoenergetic protons in the range from 500 keV
   – 2 MeV.
- 5.5 MeV α-particles from a <sup>241</sup>Am source



#### <u>Determination of nominal energies:</u>

# Energy losses in the dead material at the backside contact Energy losses simulated the backside contact



Energy losses simulated with SRIM 500 nm thick aluminum, 800 nm thick silicon



#### Methodology:

# Strategy for the high energy calibration



Problem: Deposited energy of protons and alphas does not stay in a single pixel

#### **Strategy:**

- Start with low energy protons and search for clusters few pixels are in the "uncalibrated" (E > 150 keV) energy region
- 2. Assign the missing energy to the latter pixels to create a global calibration curve

#### **Examples:**



$$E_{meas}$$
= 397 keV,  $E_{expected}$  = 420 keV  
1 pixel with  $E_{pix}$  > 150 keV  
 $\rightarrow$  Plot ( $E_{expected}$  -  $E_{meas}$ ) vs  $E_{pix}$ 



$$E_{meas}$$
= 888 keV,  $E_{expected}$  = 940 keV  
2 pixel with  $E_{pix}$  > 150 keV  
 $\rightarrow$  Plot ( $E_{expected}$  -  $E_{meas}$ )/2 vs < $E_{pix}$ >

#### Calibration correction curves determination:

# Global energy correction function



11

Protons at Van-de-Graaff



- Different per-pixel energy depositions achieved by tuning the energy of the protons.
- Energy assumed to be correctly measured with current calibration up to 150 keV

- Different per-pixel energy depositions achieved by varying the bias voltage.
- Energy assumed correct up to 1000 keV

Protons at Van-de-Graaff and 5.5 MeV  $\alpha$  particles



#### Calibrated pixel energy response:

# Comparison with design simulation







- Energy measurement up to ~2.2 MeV in each pixel.
- The per-pixel saturation level is 3.3 MeV (916 ke<sup>-</sup>)

#### Design simulation predicts saturation at 950 ke<sup>-</sup>



Reasonable agreement considering assumptions made in the simulation.

# Results

#### Calibrated pixel energy response:

# (Corrected) energy spectra





12

#### **Application:**

Spatially resolved α-particle energy loss





Energy (keV)

#### **Application:**

# Subpixel spatial resolution





Spatial resolution determined from a 2D Gaussian fit to individual tracks.

→ Resolution defined as the error on the mean value





### Conclusion



 The Timepix2 per pixel energy response has been studied in the range from 5 keV up to approximately 3.6 MeV to extend the calibration done with photons using a global correction function

- The following resolutions  $\sigma$  were achieved:
  - 1.6 keV for X-rays at 60 keV (1.4 keV for single pixel clusters)
  - ~55 keV for 2 MeV protons
  - ~220 keV for 5.5 MeV alpha particles

# Thank you very much!

# Back up

#### Energy calibration with photons:

## THL scan results



# THL scan results – setting 2





Linear beahvior of energy on THL up to ~30 keV

