SparkPix-ED: a readout ASIC with 1 MHz frame-rate for rare event experiments at LCLS-II

Lorenzo Rota*, Aldo P. Perez, B. Markovic, Umanath Kamath, Larry Ruckman, Aseem Gupta, Anu Subbaraman, Dionisio Doering, Maciej Kwiatkowski, Julie Segal, Jerome B. Hastings, Christopher J. Kenney, Angelo Dragone

lorenzor@slac.stanford.edu
Motivation: from LCLS to LCLS-II...

Linear Coherent Light Source II:

- Second generation of X-ray Free Electron Laser @ SLAC
- Rep-rate: 1 MHz, evenly spaced
- Many novel detectors needed to meet science requirements
SLAC long-term X-ray detector development plan

Bigger, Faster, Higher resolution and Higher Energies

ePix (2013-2018)
• In use at LCLS

ePixHR (2016-2022)
• 5kHz for LCLS-II first light
• ePixHR10k for tender Imaging
• ePixM for soft Imaging

SparkPix (2020-2025)
• Revolutionary, experiment-specific X-ray Cameras
• Information extraction at full rate (1MHz CW, 3GHz burst)
• Advanced features:
 • Triggering
 • Sparsification
 • Zero suppression
 • etc…

ePixHR2.5D (2019-2025)
• Full frame 25kHz for HE first light
• Sensors for hard X-rays

ePixUHR (2019-2028)
• Full frame 100kHz-1MHz
• “General purpose” cameras
• Efficient information extraction
 (Advanced Calibration / Edge-ML)
SparkPix = ePix + information extraction engines

- ePix energy module
- timing module
- counting module
- full frame readout engine

SparkPix-S

- ePix energy module
- SparkPix Sparsification engine
SparkPix-ED: applications

Rare events in X-ray scattering experiments

- **Science case:** capture interesting events happening at random, stochastic times that make their observation difficult
- **Requirements:** record N high-resolution images at closely spaced times around the rare event

Beam diagnostics

- **Science case:**
 - Analysis of the spectral content of the incident beam
 - Analysis of performance of beam kickers
 - Enable advanced modes of operations, e.g. beam dithering
- **Requirements:** pulse-by-pulse diagnostic tool at 1 MHz
1. Low-resolution images are continuously sent to the EDGE computing layer @ 1 MHz
2. N images are continuously recorded in the detector in a ring-buffer
3. EDGE analyzes data for rare events and generates a trigger when one is detected
4. The trigger starts the readout of the high-res N images recorded around the event
Operation modes

Fast trigger read-out: 1 MHz stream
- Sum signal of 9 pixels, resulting in a SuperPixel (SP) of 300*300 µm²
- Sum operation in analog domain reduces SNR by $\sqrt{9}$

High-resolution read-out
- The ring-buffers in each pixel are read-out
- Read-out rate: $1 \text{ MHz} / (N \times 9)$
- Read-out rate in 1st prototype: 25 kHz ($N=4$)
- Can be run in “CW imager” mode: 100 kHz
Requirements

<table>
<thead>
<tr>
<th>Detector</th>
<th>ePixHR10k</th>
<th>SparkPix-ED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pixel Pitch [um]</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Frame rate [kHz]</td>
<td>7</td>
<td>100</td>
</tr>
<tr>
<td>Matrix size</td>
<td>192 x 144</td>
<td>> 192 x 144</td>
</tr>
<tr>
<td>Read Noise [e(^{-}) rms]</td>
<td>75</td>
<td>100</td>
</tr>
<tr>
<td>Well depth [4keV photons]</td>
<td>> 2\cdot10^4</td>
<td>10^4</td>
</tr>
<tr>
<td>Power consumption [W/cm(^2)]</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Data rate [Gb/s]</td>
<td>3</td>
<td>44</td>
</tr>
<tr>
<td>CMOS tech node [nm]</td>
<td>250 nm</td>
<td>130 nm</td>
</tr>
</tbody>
</table>

Many design challenges:

- Pixel operation from \(~7\) kHz → 1 MHz
- Maintain similar noise performance, linearity, dynamic range, power
- ADCs and digital logic distributed across pixel matrix, in the same die

\[*\] 10^5 assuming photons are equally distributed over 9 pixels
Integration and read-out phases are pipelined
Circular buffers act as local memory, storing N images ($N=4$ in the first prototype).
Final memory depth t.b.d. based on estimated trigger latency ($\sim 10 \, \mu s$)
Fast-trigger path: signal sent to summing node, in parallel with memory write
Optimized gain-switching circuitry:
 • Correlated pre-charging \rightarrow reduce excess noise after gain switching [1]
 • Current-mode gain switching \rightarrow fast switching in presence of large input signal

Overall architecture

Pixel
- 100x100 µm
- Operates at 1 MHz
- CW mode: 100 kHz
- Stores N high-res images

Super-Pixel
- 300x300 µm
- Sum signal from 9 pixels
- Controls gain switching of individual pixels

Cluster
- 600x1200 µm
- 8 Super-Pixels → 1 ADC
- Sampling rate: 8 MSPS
- Digital logic for pixel configuration and readout

ASIC
- 2400x2400 µm
- ASIC Balcony includes:
 - Analog biasing
 - Digital read-out logic
 - Fast transmitters

ePixHR back-end LVDS out

<table>
<thead>
<tr>
<th>Pixel</th>
<th>Super-Pixel</th>
<th>Cluster</th>
<th>ASIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>100x100 µm</td>
<td>300x300 µm</td>
<td>600x1200 µm</td>
<td>2400x2400 µm</td>
</tr>
</tbody>
</table>

Operates at 1 MHz

CW mode: 100 kHz

Stores N high-res images

Sum signal from 9 pixels

Controls gain switching of individual pixels

8 Super-Pixels → 1 ADC

Sampling rate: 8 MSPS

Digital logic for pixel configuration and readout

ANALOG BALCONY

Digital logic for pixel configuration and readout

Fast transmitters
Cluster ADC

Hybrid Successive Approximation Register (SAR) topology

- 12b @ 8 MSPS
- Small area:
 - 8b CDAC + 4b RDAC
 - First prototype with MIM and MOM caps to study matching
- Power efficient:
 - VCM based switching scheme
 - Dynamic latched comparator with preamplification
- Large number of ADCs in matrix:
 - built-in ADC reference [1]
- Area: 200x600 µm²

SparkPix-ED: 1st prototype

First ASIC submitted in December 2020 features:

- Re-distribution of pixel inputs on-ASIC
 - No need for dedicated Si sensor
- 4 \textit{in-pixel} memories
 - 4 µs total “available latency” for triggering
- ASIC takes ~2 µs from integration to serialization
- 2 µs left for FPGA to analyze image stream at 1 MHz and send a readout trigger to the ASIC
 - Can prove the concept with 1st prototype
 - Memory depth in final version will depend on the algorithms running in EDGE layer
Preliminary results

Demonstrated:
- Charge injection at pixel input
- Gain switching in both modes
- Hi-resolution mode @ 100 kHz
- Fast-sum mode @ 1 MHz
- Trigger on the FPGA to close the loop and prove the concept
- Event-driven (triggered) read-out

On-going measurements:
- Noise
- Linearity
Videoss

Sum: 1 MHz

Charge injected with calibration pulse every 10 frames

Hi-res: 0.1 MHz
Trigger mode

ASIC

...

FPGA

Trigger condition: >20 pixels in low-gain

DAQ

Fast images not stored (data reduction)

Switch to memories readout

Inject at frame 8

Triggered on frame 8

Frame 6

Frame 7

Frame 8

Frame 9
Conclusion

Next steps:
- Characterize performance with Si sensor
- Development of ~5 Gb/s IOs has started → scale up to full-reticle ASIC
- Evaluate latency of EDGE computing layer algorithms → tune memory depth
- Leverage SparkPix-ED blocks to develop ePixUHR
 - Optimize for “CW” operation at 100 kHz / 1 MHz

The SparkPix-ED team:

Sensors
Julie Segal
Chris Kenney

ASIC design
Aldo P. Perez
Bojan Markovic
Umanath Kamath
Aseem Gupta
Anu Subbaraman

Electronics system
Larry Ruckman
Dionisio Doering
Maciej Kwiatkowski

PIs
Angelo Dragone
Jerome Hastings