

AGH UNIVERSITY OF SCIENCE AND TECHNOLOGY

8 b 10 MS/s Differential SAR ADC in 28 nm CMOS for Precise Energy Measurement

Piotr Kaczmarczyk Piotr Kmon

Department of Measurement and Electronics

22nd iWoRiD Ghent, 30 June 2021

Motivation

- Possible Approach
- Proposed Solution

Designed ADC

- Requirements
- Comparator and Offset Calibration
- Chip Layout
- Measurements
- Summary
- Future Plans

Why is X-ray imaging so popular	2 and more energies
 Availability 	 Contrast enhancement
 Low cost 	 Easier material identification
 High spatial resolution 	Some difficulties in medicine
 Fast acquisition 	 Multiple expositions imply
Exemplary applications	higher dose
 Crystallography 	 Take additional time
Medicine	Patient movements between
Industry	degradation
 Airport security 	
•	(McCollough et al., 2015)

(Ballabriga et al., 2020) Kaczmarczyk, Kmon (AGH UST) 8

8 b 10 MS/s Differential SAR ADC in 28 nm CMOS ...

Colorful (multienergy) scan

- All data is collected during a single exposition
- A hybrid single photon counting detector is applied
- Photons are "binned" according to their energy

Figure: Binning of detected x-rays into six energy windows (McCollough et al., 2015)

Motivation

Possible Approach

Proposed Solution

Designed ADC

- Requirements
- Comparator and Offset Calibration
- Chip Layout
- Measurements
- Summary
- Future Plans

- Usually 2–4 discriminators
- Each for one energy level
- Globally set thresholds
- e.g.: 4 energy levels in MPIX (Gryboś et al., iWoRiD 2021) 8 energy levels in Medipix3RX (Ballabriga et al., 2013)

Figure: Simplified readout channel of an *N*-energy levels detecting system

- 2^{bits} energy levels recognition
- No information about the intensity stored in ASIC

e.g. 8b in ERPC (Meng et al., 2009)

Figure: Simplified readout channel with an ADC

- Motivation
- Possible Approach
- Proposed Solution
- Designed ADC
 - Requirements
 - Comparator and Offset Calibration
 - Chip Layout
 - Measurements
 - Summary
 - Future Plans

Figure: Proposed pixel readout channel of an 2^N -energy levels detector

- Discriminator for triggering the ADC and cutting off the background noise
- 2^N energy levels recognition
- Counters store both intensity and energy of incoming photons (energy spectrum)
- SAR architecture seems to be a reasonable choice
 - Iow power consumption
 - sufficient conversion rate possibilities

(Peizerat et al., 2017)

- Motivation
- Possible Approach
- Proposed Solution
- Designed ADC
 - Requirements
 - Comparator and Offset Calibration
 - Chip Layout
 - Measurements
 - Summary
 - Future Plans

- Motivation
- Possible Approach
- Proposed Solution
- Designed ADC
 - Requirements
 - Comparator and Offset Calibration
 - Chip Layout
 - Measurements
 - Summary
 - Future Plans

Figure: Simplified ADC architecture with a serial output register

Table: General specification for X-ray imaging and computed tomography (Anastasio and La Riviere, 2012)

Count rate	Pixel pitch	Energy range
$Gcps/mm^2$	μm	keV
0.05	typ. 85	28-40
0.001-0.5	typ. 150	70-120
1	55-1000	80-140
	Count rate Gcps/mm ² 0.05 0.001-0.5 1	Count rate Pixel pitch Gcps/mm ² μm 0.05 typ. 85 0.001-0.5 typ. 150 1 55-1000

- 8 bits
- 10 MS/s
- Differential
- CMOS 28 nm
- $V_{DD} = 1 V$

- Limited power
 - Dynamic comparator (van Elzakker et al., 2010)
- Limited area
- Small capacitive DAC
- Small unit capacitance
 - Custom MOM Cunit=0.5 fF
- Small input pair dimensioning
- Higher input offset voltage
 - Time-domain offset compensation (Yang et al., 2019)

- Motivation
- Possible Approach
- Proposed Solution
- Designed ADC
 - Requirements
 - Comparator and Offset Calibration
 - Chip Layout
 - Measurements
 - Summary
 - Future Plans

Classical Compensation Methods

- Increasing input pair dimensions
- Additional node capacitance

- Area increase
- Power increase
- Speed decrease

(Kaczmarczyk and Kmon, 2020)

Kaczmarczyk, Kmon (AGH UST) 8 b 10 MS/s Differential SAR ADC in 28 nm CMOS ...

- Motivation
- Possible Approach
- Proposed Solution
- Designed ADC
 - Requirements
 - Comparator and Offset Calibration
 - Chip Layout
 - Measurements
 - Summary
 - Future Plans

Kaczmarczyk, Kmon (AGH UST) 8 b 10 MS/s Differential SAR ADC in 28 nm CMOS ...

- Motivation
- Possible Approach
- Proposed Solution
- Designed ADC
 - Requirements
 - Comparator and Offset Calibration
 - Chip Layout
 - Measurements
 - Summary
 - Future Plans

Figure: Mesurement setup

Figure: PCB front

Figure: PCB back

Figure: Setup connections

Measurements: Static Parameters – Single IC

Kaczmarczyk, Kmon (AGH UST) 8 b 10 MS/s Differential SAR ADC in 28 nm CMOS ...

Measurements: Static Parameters – Summary

	INL _{min}	INL _{max} DNL _{min}		DNL _{max}
	LSB	LSB	LSB	LSB
Chip 1	-0.23	0.41	-0.24	0.14
Chip 2	-0.39	0.46	-0.33	0.11
Chip 3	-0.49	0.63	-0.41	0.13
Chip 4	-1.05	0.67	-0.23	0.13
Chip 5	-0.31	0.36	-0.23	0.17
Chip 6	-0.33	0.31	-0.26	0.11
Chip 7	-0.25	0.21	-0.23	0.14
Chip 8	-0.81	0.63	-0.26	0.23
Mean	-0.48	0.46	-0.27	0.15

Kaczmarczyk, Kmon (AGH UST)

8 b 10 MS/s Differential SAR ADC in 28 nm CMOS ...

- Motivation
- Possible Approach
- Proposed Solution
- Designed ADC
 - Requirements
 - Comparator and Offset Calibration
 - Chip Layout
 - Measurements
 - Summary
 - Future Plans

- We have designed and tested the 8-bit differential SAR ADC in 28 nm CMOS node
- Time-domain offset compensation has been positively evaluated
- The core size, sampling frequency and power consumption allows for placement in a small pixel enabling energy-resolved imaging

	INL	DNL	Area	Cunit	$\mathbf{f}_{\mathbf{s}}$	ENOB	Power	Other
	LSB	LSB	μm^2	fF	MS/s	bits	μW	
This work	<0.5	<0.3	30×60	0.5	9.1	>7	~45	SAR with offset compensation in time
(Meng et al., 2009)	?	?	in 350 \times 350 pixel	?	0.4	?	390 per whole pixel	TDC and 4 to 8-bit DAC
(Peizerat et al., 2017)	?	?	$\sim 250{\times}250$?	10	?	10 000 per whole pixel	8-bit SAR ADC

- Motivation
- Possible Approach
- Proposed Solution
- Designed ADC
 - Requirements
 - Comparator and Offset Calibration
 - Chip Layout
 - Measurements
 - Summary
 - Future Plans

- The area occupancy can still be decreased by reducing the unit capacitance (here 0.5 fF), or by applying another switching scheme and changing the capacitor array.
- Power can be saved by getting rid of the clock and applying self-clocking logic.
- Offset calibration would be more efficient when implemented with capacitively delayed buffers instead of supply regulation.
- Linearity can be improved by replacing the input transition gate with a bootstrap switch.

- M. A. Anastasio and P. La Riviere, editors. *Emerging Imaging Technologies in Medicine*. CRC Press, Dec. 2012. doi: 10.1201/b13680.
- R. Ballabriga, J. Alozy, G. Blaj, M. Campbell, M. Fiederle, E. Frojdh, E. H. M. Heijne, X. Llopart, M. Pichotka, S. Procz, L. Tlustos, and W. Wong. The Medipix3RX: a high resolution, zero dead-time pixel detector readout chip allowing spectroscopic imaging. *Journal of Instrumentation*, 8(02):C02016–C02016, feb 2013. doi: 10.1088/1748-0221/8/02/c02016.
- R. Ballabriga, J. Alozy, F. N. Bandi, M. Campbell, N. Egidos, J. M. Fernandez-Tenllado, E. H. M. Heijne, I. Kremastiotis, X. Llopart, B. J. Madsen, D. Pennicard, V. Sriskaran, and L.Tlustos. Photon counting detectors for x-ray imaging with emphasis on CT. *IEEE Transactions on Radiation and Plasma Medical Sciences*, pages 1–1, 2020. doi: 10.1109/trpms.2020.3002949.
- P. Gryboś, R. Kłeczek, P. Kmon, A. Krzyżanowska, P. Otfinowski, R. Szczygieł, and M. Żołądź. 18k pixel readout IC for CdTe detectors operating in single photon counting mode with interpixel communication. In *22nd International Workshop on Radiation Imaging Detectors*, iWoRiD 2021.
- P. Kaczmarczyk and P. Kmon. Design of a dynamic comparator with time-domain offset calibration. *Przegląd Elektrotechniczny*, 96(12):121–124, Dec. 2020. doi: 10.15199/48.2020.12.23.
- C. H. McCollough, S. Leng, L. Yu, and J. G. Fletcher. Dual-and multi-energy CT: principles, technical approaches, and clinical applications. *Radiology*, 276(3):637–653, 2015.

- L.-J. Meng, J. W. Tan, K. Spartiotis, and T. Schulman. Preliminary evaluation of a novel energy-resolved photon-counting gamma ray detector. *Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment*, 604(3):548–554, jun 2009. doi: 10.1016/j.nima.2009.02.043.
- A. Peizerat, J.-P. Rostaing, P. Ouvrier-Buffet, S. Stanchina, P. Radisson, and E. Marche. A 256 energy bin spectrum x-ray photon-counting image sensor providing 8mcounts/s/pixel and on-chip charge sharing, charge induction and pile-up corrections. In 2017 Symposium on VLSI Circuits. IEEE, 2017. doi: 10.23919/vlsic.2017.8008496.
- M. van Elzakker, E. van Tuijl, P. Geraedts, D. Schinkel, E. A. M. Klumperink, and B. Nauta. A 10-bit charge-redistribution ADC consuming 1.9µW at 1 MS/s. *IEEE Journal of Solid-State Circuits*, 45(5):1007–1015, May 2010. ISSN 0018-9200. doi: 10.1109/JSSC.2010.2043893.
- X. Yang, S.-J. Bae, and H.-S. Lee. An 8-bit 2.8 GS/s flash ADC with time-based offset calibration and interpolation in 65 nm CMOS. Sept. 2019. doi: 10.1109/ESSCIRC.2019.8902814.

Thank you for your attention

Questions are welcome

Piotr Kaczmarczyk piotr.kaczmarczyk@agh.edu.pl Piotr Kmon piotr.kmon@agh.edu.pl

Research founded from the Ministry of Education and Science of Poland for the research project under the "Diamond Grant" program (0071/DIA/2018/47).

Diamentowy Grant