"My own visions of CLIC", artwork by Natasha de Heney, 2010

Erica Brondolin, on behalf of CLIC & CLICdp collaborations

CHIC

Chicago workshop on the Circular Electron Positron Collider

16th September 2019

Outline

- **Introduction**
- **The Physics Potential**
- The Accelerator
- **The Detector**
- **Summary**

The CLIC project

- **● CLIC = Compact Linear Collider**
- High-energy linear e⁺e⁻ collider
- Centre-of-mass energy from 380 GeV up to 3 TeV
- CLIC would be implemented in three energy stages (7-8 years each)
- Physics goals:
	- Precision measurement of Higgs boson and top quark
	- Precision measurement of new physics (discovered at LHC, CLIC, ...)
	- Search for physics Beyond Standard Model (BSM) Possibility adapt the stages of the stages to new LHC discovery!

Collaborations

CLIC accelerator collaboration ~70 institutes from ~30 countries

CLIC accelerator studies:

- CLIC accelerator design and development
- Construction and operation of CTF3

CLIC detector and physics (CLICdp) ~30 institutes from 18 countries

Focus of CLIC-specific studies on:

- Physics prospects and simulation studies
- Detector optimization + R&D for CLIC

compositeness $3_{\hat{c}_H}$ hidden valley stub tracks self-coupling $\prod_{i=1}^{n}$ ggs $V_{sr}(\phi) = rg\Lambda^3\phi$ $\Gamma_{h\rightarrow gg}$. $\overline{\mathsf{SMEFT}}$ flavour-changing peutral currents $\overline{\Gamma_{h\rightarrow aq}^{\text{SM}}}$. $\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda^2} \sum c_i \mathcal{O}_{\hat{i},\hat{i}}$ genesis⁻ lepton flavor violaton CLIC search dark mätter \dot{m}_W^2 discovery inert doublet BSM \mathscr{M}^2_χ $\overline{I}WW$ α $\mathcal{A}^{\overline{\mathrm{BSM}}}_{\mathrm{L},\mathrm{L}}$ $\overline{\mathrm{SM}}$ $\cos 2\varphi$ 2HDM precis hono-photor $\overline{\mathcal{L}} = \epsilon_q \epsilon_t g_\star$ <u>dis</u> wa eff^v)⁻¹ SUSY $\stackrel{\theta \le \rho \mu^2}{\longrightarrow} \stackrel{\theta \le \rho \mu^2}{\longrightarrow} \stackrel{m_-}{\cong}$ Tatter Iong-Iived Erica Brondolin (erica.brondolin@cern.ch)

CLIC Physics Potential**Physics Potential** CEIC

CLIC staging

- Physics programme extends over 25–30 years
- Electron polarisation :
	- ±80% longitudinal polarization for the electron beam
	- Enhances Higgs production at high-energy stages
	- Provides additional observables sensitive to BSM physics
	- Helps to characterise new particles in case of discovery
- Luminosity spectrum
	- \circ Effect is dependent on \sqrt{s}
	- Luminosity spectrum can be measured in situ using large-angle Bhabha scattering events, to 5% accuracy at 3 TeV
	- Most of the analyses use the entire lumi spectrum
- Baseline scenario:

- **Higgsstrahlung: e⁺e⁻ → ZH**
	- \circ $\sigma \sim 1/s$, dominant up to ~ 450 GeV
	- Higgs identification from recoil
- **WW fusion: e⁺ e - → Hν e ν e**
	- **σ ~ log(s)**, dominant above ~ 450 GeV
	- Large statistics at high energy -> rarer decays

● **e+ e - → HHν e ν e**

●

- Allow simultaneous extraction of triple Higgs coupling and HHWW quadratic coupling
- Benefits from high-energy operation

All Higgs studies summarised in [Eur. Phys. J. C 77 \(2017\) 475](https://link.springer.com/article/10.1140%2Fepjc%2Fs10052-017-4968-5)

Higgs coupling sensitivity

- **Fully model-independent analysis**:
	- \circ Free parameters Γ_H and ten Higgs couplings
	- No assumption on invisible Higgs decays
- High precision measurements **@ CLIC**:
	- Precision ≲**1% for most couplings**
	- The Higgs width is extracted with **4.7 2.5%** precision

[arXiv:1812.01644](https://arxiv.org/abs/1812.01644)

Higgs couplings

 10^{-7}

 10^{-3}

 10

 δg_H^{ZZ}

 δq_L^{ZZ}

LHC S2 + LEP/SLD

7/WW/240GeV

FCC-ee Z/WW/240GeV/365GeV

 δg_{H}^{WW}

 δq_H^{WW}

 δg_H^{YY}

 δq_H^{YY}

 $\delta g_H^{Z\gamma}$

 $\delta a_{\mu}^{\text{Zy}}$

FCC-ee Z/WW/240GeV

Higgs coupling sensitivity

perfect EW

imposed U(2) in 1&2 gen quarks

 $\delta g_{1,Z}$

 $\delta g_{1,Z}$

CEPC/FCC-ee without Z-pole

 δK_V

 $\delta \kappa_{v}$

lepton colliders are combined with HL-LHC & LEP/SLD

○ perfect EW&TGC

 10^{-1}

 10^{-2}

 10^{-4}

 10^{-5}

20 10

 1.5

 λ_z

 λ_{Z}

precision reach on effective couplings from full EFT global fit

ILC 250GeV/350GeV/500GeV | CLIC 380GeV/1.5TeV/3TeV

 δg_H^{cc}

 $\delta g^{\rm cc}_{H}$

Ratios, real EW / perfect EW

CLIC 380GeV

CLIC 380GeV/1.5TeV

 $P(e^-,e^+)=(0.8, 0)$

 $\delta g_H^{\rm bb}$

 $\delta g_H^{\rm bb}$

 $\delta g_H^{\tau\tau}$

 $\delta g^{\tau\tau}_{H}$

ILC 250GeV + 7 @250GeV

ILC 250GeV/350GeV

 $P(e^-,e^+)=(\mp 0.8,\pm 0.3)$

 δg_H^{gg}

 δq_H^{gg}

 $\delta g_H^{\rm tt}$

 δq^{tt}_{H}

- $\frac{a}{b}$ Some couplings are very challenging at hadron colliders
	- \circ Example: H \rightarrow cc

 $\delta q^{\mu\mu}_{H}$

 $\delta g^{\mu\mu}_H$

Top Physics

- Production threshold at $\sqrt{s} \sim 2m_{\text{top}}$
- Large event sample at 380 GeV
- Threshold scan around 350 GeV

 \bullet **e** $\text{e}^{\text{+}}\text{e}^{\text{-}} \rightarrow \text{tt}$ **H**

- Maximum near 800 GeV
- **e+ e - → ttν e ν e** (Vector Boson Fusion):
	- Benefits from highest energies
	- Potential high-energy probe of the Top Yukawa coupling

All Top studies summarised in [arXiv:1807.02441](https://arxiv.org/abs/1807.02441)

Top Threshold Scan

- Energy scan: 10 points with 10 fb⁻¹ from 340 GeV to 349 GeV
- $\sigma_{\text{e}^+\text{e}^-\to t^+}$ around threshold is sensitive to well-defined 1s top-quark mass, width and other model parameters
- Statistical uncertainty: $\simeq 20 \text{ MeV}$
- Expected uncertainty on the top-mass $\sigma_{\text{inter}} \approx 50 \text{ MeV}$ (dominated by theory NNNLO scale uncertainties)
- Precision at the HL-LHC limited to several hundred MeV **top-quark width Yukawa coupling**

New physics searches

- CLIC operating at high energy provides significant discovery potential for BSM physics
- **Direct searches** of new particles:
- o Direct searches can find particles up to kinematic limit of 1.5 TeV
- Possible observation of the new phenomena thanks to the low background (no QCD)
- Precision measurements of new particle properties

New physics searches

- CLIC operating at high energy provides significant discovery potential for BSM physics
- **Indirect searches of new physics:**
	- Precision measurements of sensitive observables reveal a signs of new physics, comparing to the SM expectations
	- Standard Model Effective Field Theory: contributions from new physics expressed by dimension-6 operators
	- \circ The reach is higher several tens of TeV

Example

Projected limits from di-fermion final states

CLIC acceleratorCLIC accelerator

CLIC accelerator layout @ 3 TeV

CLIC accelerator layout @ 3 TeV

"Two-beam" setup

Experimental Conditions

- High luminosities achieved by using extremely small beam sizes
	- → CLIC bunch size (@3 TeV): **40 nm** (x) **x 1 nm** (y) **x 44 μm** (z)
	- \rightarrow very high EM-fields \rightarrow beam-beam interactions
- Main backgrounds:
	- **○ Incoherent e⁺ e - pairs**
		- High occupancy
		- Mostly in the forward region
		- Impact on detector granularity and design
	- **○ γγ → hadrons**
		- High energy deposits
		- Impact on detector granularity, design and physics measurement
- Detector acceptance starts at 10 mrad

e⁺e Pairs

Beamstrahlung

Experimental Conditions

- CLIC operates in bunch trains, repetition rate of 50 Hz
	- Low duty cycle
	- Possibility for power pulsing: switch detector components off between trains to reduce heat dissipation
- 312 bunches within train separated by 0.5 ns ($@$ 3 TeV)
- Trigger-less readout foreseen
- Time structure of the beam & background suppression drive timing requirements for detector
	- 5 ns hit time-stamping in tracking
	- 1 ns hit time resolution for calorimeters

CLIC detectorCLIC detector

Detector requirements

- **Momentum resolution**
	- e.g. Higgs coupling to muons, leptons from BSM
	- σ_{pT}/p_T ~ 2 × 10 ⁻⁵ GeV ⁻¹ above 100 GeV
- Jet energy resolution
	- e.g. separation of W/Z/H di-jets
	- **σE /E ~ 5% 3.5%** for jets at 50 GeV 1000 GeV
- Impact parameter resolution
	- e.g. b/c-tagging, Higgs couplings
	- **σ rφ ~ a** ⊕ **b / (p[GeV] sin 3/2 θ) μm** with $a = 5 \mu m$, $b = 15 \mu m$
- Lepton identification efficiency **> 95 %**
- Angular coverage
	- Very forward electron and photon tagging
	- Down to **θ = 10 mrad** (η = 5.3)

The CLIC detector model

Superconducting solenoid with 4T magnetic field

Vertex detector

- 3 double layers with 25 × 25 µm2 pixels
- \circ Extremely accurate (σ < 3 µm) and light (< 0.2 % X0 per layer)
- **Silicon Tracker**
	- Composed of large pixels/strips
	- \circ Outer R ~ 1.5 m
	- 5 ns hit time-stamping in tracking
- Fine grained calorimeters
	- Si-W ECAL
		- 40 layers \rightarrow 22 X_0 and 1 λ_1
		- \blacksquare 5 × 5 mm² Si cell size (∼ 2500 m²)
		- 1 ns accuracy for calo hits
- **Forward calorimeters**
- Scint-Fe HCAL
	- 60 layers \rightarrow 7.5 λ
	- \blacksquare 30 × 30 mm² scintillator cell size (∼ 9000 m²) +SiPM
	- 1 ns accuracy for calo hits
- very forward electron tagging and luminosity measurements
- Return yoke & muon chambers
	- Mainly for muon ID

Detector Technology R&D

Vertex & Tracker

Hybrid detectors CLICpix + 50 um sensor

Monolithic detectors AtlasPix_Simple

Detector integration Cooling system

Calorimeters

FCAL LumiCal silicon sensors 1.8 mm wide strips

CMS HGcal silicon sensors ~1 cm² cells on 8-inch wafer

CALICE silicon PIN diodes 1 $x1$ cm² in 6 $x6$ matrices

CALICE scint. tiles + SiPMs $3x3$ $cm²$ cells

Simulation and optimization

- **Full Geant4 detector simulation** including overlay of beam-induced backgrounds
- Full reconstruction chain:
	- reconstruction of tracks and clusters
	- particle flow objects
	- jets
	- flavor tagging
- Optimization of 3 TeV CLIC detector model in full detector simulations
	- \rightarrow Ensure that detector performance meets requirements

DIRAC ILCSOft WE ALL DIRAC

Software tools widely used

Beam-induced background rejection

- $\gamma \gamma \rightarrow$ hadrons background can be suppressed by $\boldsymbol{\mathsf{p}}_\textsf{T}$ **vs. time** selections on individually reconstructed particles
- Identify time of physics event in the full bunch train
- Suppression via
	- Cluster time
	- Particle type
	- \circ p_T
- Cuts adapted per detector region and beam energy
- Selection cuts reduce background from 1 TeV to 100 GeV @ 3 TeV!

Beam-induced background rejection

- $\gamma \gamma \rightarrow$ hadrons background can be suppressed by $\boldsymbol{\mathsf{p}}_\textsf{T}$ **vs. time** selections on individually reconstructed particles
- Identify time of physics event in the full bunch train
- Suppression via
	- Timing requirements
	- Particle type
	- Retaining high-p T objects
- Cuts adapted per detector region and beam energy
- Selection cuts reduce background from 1 TeV to 100 GeV @ 3 TeV!

- **● Momentum resolution**
	- e.g. Higgs coupling to muons, leptons from BSM
	- σ_{pT}/p_T ~ 2 × 10 ⁻⁵ GeV ⁻¹ above 100 GeV
- Jet energy resolution
	- e.g. separation of W/Z/H di-jets
	- **σE /E ~ 5% 3.5%** for jets at 50 GeV 1000 GeV
- Impact parameter resolution
	- e.g. b/c-tagging, Higgs couplings
	- **σ rφ ~ a** ⊕ **b / (p[GeV] sin 3/2 θ) μm** with $a = 5 \mu m$, $b = 15 \mu m$
- Lepton identification efficiency **> 95 %**
- Angular coverage
	- Very forward electron and photon tagging
	- Down to **θ = 10 mrad** (η = 5.3)

dN/dp

60

-no smearing

 $-\sigma_{\rm n}$ /p²=4×10⁻⁵ $-\sigma_{\rm p}/p_{\rm{z}}^2 = 8 \times 10^{-5}$

- **Momentum resolution**
	- e.g. Higgs coupling to muons, leptons from BSM
	- σ_{pT}/p_T ~ 2 × 10 ⁻⁵ GeV ⁻¹ above 100 GeV
- **● Jet energy resolution**
	- e.g. separation of W/Z/H di-jets
	- **σE /E ~ 5% 3.5%** for jets at 50 GeV 1000 GeV
- Impact parameter resolution
	- e.g. b/c-tagging, Higgs couplings
	- **σ rφ ~ a** ⊕ **b / (p[GeV] sin 3/2 θ) μm** with $a = 5 \mu m$, $b = 15 \mu m$
- Lepton identification efficiency **> 95 %**
- Angular coverage
	- Very forward electron and photon tagging
	- Down to **θ = 10 mrad** (η = 5.3)

- **Momentum resolution**
	- e.g. Higgs coupling to muons, leptons from BSM
	- σ_{pT}/p_T ~ 2 × 10 ⁻⁵ GeV ⁻¹ above 100 GeV
- Jet energy resolution
	- e.g. separation of W/Z/H di-jets
	- **σE /E ~ 5% 3.5%** for jets at 50 GeV 1000 GeV
- **Impact parameter resolution**
	- e.g. b/c-tagging, Higgs couplings
	- **σ rφ ~ a** ⊕ **b / (p[GeV] sin 3/2 θ) μm** with $a = 5 \mu m$, $b = 15 \mu m$
- Lepton identification efficiency **> 95 %**
- Angular coverage
	- Very forward electron and photon tagging
	- Down to **θ = 10 mrad** (η = 5.3)

- **Momentum resolution**
	- e.g. Higgs coupling to muons, leptons from BSM
	- σ_{pT}/p_T ~ 2 × 10 ⁻⁵ GeV ⁻¹ above 100 GeV
- Jet energy resolution
	- \circ e.g. separation of W/Z/H di-jets
	- **σE /E ~ 5% 3.5%** for jets at 50 GeV 1000 GeV
- Impact parameter resolution
	- e.g. b/c-tagging, Higgs couplings
	- **σ rφ ~ a** ⊕ **b / (p[GeV] sin 3/2 θ) μm** with $a = 5 \mu m$, $b = 15 \mu m$
- **Lepton identification efficiency > 95 %**
- Angular coverage
	- Very forward electron and photon tagging
	- Down to **θ = 10 mrad** (η = 5.3)

CLICdet parameters and performance: [arXiv:1812.07337](https://arxiv.org/abs/1812.07337)

Summary Documents

Devering vergy output you fit to

- **2012** CLIC Conceptual Design Report ○ [A Multi-TeV Linear Collider Based on CLIC Technology](https://cds.cern.ch/record/1500095)
	- [Towards a staged e+e− linear collider exploring the terascale](https://cds.cern.ch/record/1475225)
	- [Physics and Detectors at CLIC](https://cds.cern.ch/record/1425915)
	- **2016** [Updated Baseline for a staged Compact Linear Collider](https://cds.cern.ch/record/2210892)
	- **2018** Documents for the European Strategy Update
		- [CLIC 2018 Summary Report](https://cds.cern.ch/record/2652188)
		- o [CLIC Project Implementation Plan](https://cds.cern.ch/record/2652600)
		- o [The CLIC Potential for New Physics](http://cds.cern.ch/record/2650541)
		- [Detector technologies for CLIC](http://cds.cern.ch/record/2673779)
		- + Many supporting notes and papers
	- Two formal ESU submissions:
		- <http://clic.cern/european-strategy>

THE COMPACT LINEAR COLLIDER (CLIC

CERN - Charles Company

Summary & conclusions

- CLIC is a **mature international project** with possible start from 2035
- CLIC offers opportunity for **broad precision physics program**
	- 380 GeV Optimised for high precision measurements of Higgs boson and top quark
	- 1.5, 3 TeV Best sensitivity for BSM searches, rare Higgs processes and decays
- CLIC environment and physics goals lead to challenging **requirements**
- **Detector model CLICdet optimized and validated in full simulation**
- **Broad and active R&D** on vertex and tracking detectors
	- + synergies with CALICE and FCAL collaborations for R&D on calorimeters
- The CLICdp Collaboration has prepared **comprehensive documentation** on physics program, detector design and R&D activities
- Summaries have been submitted to the European Strategy

"My own visions of CLIC", artwork by Natasha de Heney, 2010

100 to 200

Backup

Beam-induced background rejection

- $\gamma \gamma \rightarrow$ hadrons background can be suppressed by $\boldsymbol{\mathsf{p}}_\textsf{T}$ **vs. time** selections on individually reconstructed particles
- Identify time of physics event in the full bunch train
- Suppression via
	- Timing requirements
	- Particle type
	- Retaining high-p T objects
- Cuts adapted per detector region and beam energy
- Selection cuts reduce background from 1 TeV to 100 GeV @ 3 TeV!

Fully-hadronic ttbar **before** background suppression

Event display @ 380 GeV

Beam-induced background rejection

- $\gamma \gamma \rightarrow$ hadrons background can be suppressed by $\boldsymbol{\mathsf{p}}_\textsf{T}$ **vs. time** selections on individually reconstructed particles
- Identify time of physics event in the full bunch train
- Suppression via
	- Timing requirements
	- Particle type
	- Retaining high-p T objects
- Cuts adapted per detector region and beam energy
- Selection cuts reduce background from 1 TeV to 100 GeV @ 3 TeV!

Fully-hadronic ttbar **after** background suppression

Event display @ 380 GeV

- **Momentum resolution**
	- e.g. Higgs coupling to muons, leptons from BSM
	- σ_{pT}/p_T ~ 2 × 10 ⁻⁵ GeV ⁻¹ above 100 GeV
- **Jet energy resolution**
	- e.g. separation of W/Z/H di-jets
	- **σ_E/E ~ 5% 3.5%** for jets at 50 GeV 1000 GeV
- **Impact parameter resolution**
	- e.g. b/c-tagging, Higgs couplings
	- **σ rφ ~ a** ⊕ **b / (p[GeV] sin 3/2 θ) μm** with $a = 5 \mu m$, $b = 15 \mu m$
- Angular coverage
	- Lepton identification efficiency **> 95 %**
	- Very forward electron and photon tagging
	- Down to **θ = 10 mrad** (η = 5.3)

 0.9

Charm eff.

SAB