"My own visions of CLIC", artwork by Natasha de Heney, 2010

Erica Brondolin, on behalf of CLIC & CLICdp collaborations

CÉRN

Chicago workshop on the Circular Electron Positron Collider

16th September 2019

Outline

- Introduction
- The Physics Potential
- The Accelerator
- The Detector
- Summary

The CLIC project

- **CLIC = Compact Linear Collider**
- High-energy linear e⁺e⁻ collider
- Centre-of-mass energy from 380 GeV up to 3 TeV
- CLIC would be implemented in three energy stages (7-8 years each)
- Physics goals:
 - Precision measurement of Higgs 0 boson and top quark
 - Precision measurement of new 0 physics (discovered at LHC, CLIC, ...)
 - Search for physics Beyond Standard 0 Possibility to adapt the stages to new LHC discovery! Model (BSM)

Collaborations

CLIC accelerator collaboration ~70 institutes from ~30 countries

CLIC accelerator studies:

- CLIC accelerator design and development
- Construction and operation of CTF3

CLIC detector and physics (CLICdp) ~30 institutes from 18 countries

Focus of CLIC-specific studies on:

- Physics prospects and simulation studies
- Detector optimization + R&D for CLIC

compositeness $\frac{3}{\delta_{\kappa_{\lambda}}} = \kappa_{\lambda} - 1 = \hat{c}_{6} - \frac{3}{2}\hat{c}_{H}$ hidden valley stub tracks self-coupling Higgs $V_{sr}(\phi) = rg\Lambda^{3}\phi$ $\Gamma_{h \to gg}$ SMEFT flavour-changing neutral currents $\Gamma^{\mathrm{SM}}_{h o gg}$ $\mathcal{L}_{ ext{eff}} = \mathcal{L}_{ ext{SM}} + rac{1}{\Lambda^2} \sum c_i \mathcal{O}_i$ genesis lepton flavor violation CLIC.search dark matter \dot{m}^2_W discovery inert doublet BSN - m_χ^2 IWW $\cos 2\varphi$ 2HDM preci onø photor $f_{\pm} \stackrel{}{=} \dot{\epsilon}_q \epsilon_t g_{\star}$ disr Na $\underset{\text{eff} v}{\text{eff} v}^{-1} \text{SUSY} \overset{\theta \lesssim \rho \mu^2 / M^2}{\textbf{axion}} \simeq \left(\frac{m_-}{m_+}\right)$ hatter long-lived

CLIC **Physics Potential Physics Potential** CLIC

CLIC staging

- Physics programme extends over 25–30 years
- Electron polarisation :
 - ±80% longitudinal polarization for the electron beam
 - Enhances Higgs production at high-energy stages
 - Provides additional observables sensitive to BSM physics
 - \circ \qquad Helps to characterise new particles in case of discovery
- Luminosity spectrum
 - Effect is dependent on \sqrt{s}
 - Luminosity spectrum can be measured in situ using large-angle Bhabha scattering events, to 5% accuracy at 3 TeV
 - Most of the analyses use the entire lumi spectrum
- Baseline scenario:

- Higgsstrahlung: $e^+e^- \rightarrow ZH$
 - $\sigma \sim 1/s$, dominant up to ~ 450 GeV
 - Higgs identification from recoil
- WW fusion: $e^+e^- \rightarrow Hv_e^-v_e^-$
 - $\sigma \sim \log(s)$, dominant above ~ 450 GeV
 - Large statistics at high energy -> rarer decays

• $e^+e^- \rightarrow HHv_e^-v_e^-$

- Allow simultaneous extraction of triple Higgs coupling and HHWW quadratic coupling
- Benefits from high-energy operation

All Higgs studies summarised in Eur. Phys. J. C 77 (2017) 475

Higgs coupling sensitivity

- Fully model-independent analysis:
 - \circ $\,$ Free parameters $\Gamma_{\!_{H}}$ and ten Higgs couplings
 - No assumption on invisible Higgs decays
- High precision measurements @ CLIC:
 - Precision \$1% for most couplings
 - The Higgs width is extracted with 4.7 –
 2.5% precision

arXiv:1812.01644

Higgs coupling sensitivity

LHC S2 + LEP/SLD II C 250GeV + 7 @250GeV CLIC 380GeV CEPC/FCC-ee without Z-pole 10^{-1} 7/WW/240GeV ILC 250GeV/350GeV CLIC 380GeV/1.5TeV perfect EW perfect EW&TGC ILC 250GeV/350GeV/500GeV CLIC 380GeV/1.5TeV/3TeV CC-ee Z/WW/240GeV lepton colliders are combined with HL-LHC & LEP/SLD FCC-ee Z/WW/240GeV/365GeV $P(e^{-},e^{+})=(\mp 0.8,\pm 0.3)$ $P(e^{-},e^{+})=(\mp 0.8,0)$ imposed U(2) in 1&2 gen guarks 10⁻² Higgs couplings 10aTGCs 10-4 10^{-3} 10-5 10 δg_{H}^{ZZ} δgHWW $\delta g_{H}^{\gamma\gamma}$ $\delta g_{H}^{Z\gamma}$ δg_{H}^{99} δg_{H}^{tt} δg_{H}^{cc} δg_{H}^{bb} δg_H^{TT} $\delta g_{H}^{\mu\mu}$ $\delta g_{1,Z}$ λ_7 δκν 20 20 10 Ratios, real EW / perfect EW 1.5 1.5 δgHWW δgHCC δau δqH δau δq⁹⁹ δq_{H}^{tt} δgHbb δgH $\delta q_{H}^{\mu\mu}$ $\delta g_{1,Z}$ δκν λ_Z

precision reach on effective couplings from full EFT global fit

- Many Higgs couplings can be measured significantly better CLIC compared to HL-LHC
 - Some couplings are very challenging at hadron colliders

Example: $H \rightarrow cc$

Ο

Top Physics

 $e^+e^- \rightarrow tt$

- Production threshold at $\sqrt{s} \sim 2m_{top}$
- Large event sample at 380 GeV
- Threshold scan around 350 GeV

 $e^+e^- \rightarrow ttH$

- Maximum near 800 GeV
- $e^+e^- \rightarrow ttv_v$ (Vector Boson Fusion):
 - Benefits from highest energies
 - Potential high-energy probe of the Top Yukawa coupling

All Top studies summarised in arXiv:1807.02441

Top Threshold Scan

- Energy scan: 10 points with 10 fb⁻¹ from 340 GeV to 349 GeV
- $\sigma_{_{e^+e^- \rightarrow \, t\! t}}$ around threshold is sensitive to well-defined 1s top-quark mass, width and other model parameters
- Statistical uncertainty: ≈ 20 MeV
- Expected uncertainty on the top-mass $\sigma_{\rm mton}$ ≈ 50 MeV (dominated by theory NNNLO scale uncertainties)
- Precision at the HI -I HC limited to several hundred MeV

New physics searches

- CLIC operating at high energy provides significant discovery potential for BSM physics
- Direct searches of new particles:
 - Direct searches can find particles up to kinematic limit of 1.5 TeV
- Possible observation of the new phenomena thanks to the low background (no QCD)
- Precision measurements of new particle properties

New physics searches

- CLIC operating at high energy provides significant discovery potential for BSM physics
- Indirect searches of new physics:
 - Precision measurements of sensitive observables reveal a signs of new physics, comparing to the SM expectations
 - Standard Model Effective Field Theory: contributions from new physics expressed by dimension-6 operators
 - <u>The reach is higher</u> several tens of TeV

Example

Projected limits from di-fermion final states

10.00	
	CLIC sensitivity increases
	significantly with \sqrt{s}
	eighniodhay war to

CLIC accelerator CTIC accelerator

CLIC accelerator layout @ 3 TeV

CLIC accelerator layout @ 3 TeV

"Two-beam" setup

Chicago workshop on the CEPC, 2019

Experimental Conditions

- High luminosities achieved by using extremely small beam sizes \rightarrow CLIC bunch size (@3 TeV): 40 nm (x) x 1 nm (y) x 44 μ m (z)
 - \rightarrow very high EM-fields \rightarrow beam-beam interactions
- Main backgrounds:
 - Incoherent e⁺e⁻ pairs 0
 - High occupancy
 - Mostly in the forward region
 - Impact on detector granularity and design
 - $yy \rightarrow hadrons$ 0
 - High energy deposits
 - Impact on detector granularity, design and physics measurement
- Detector acceptance starts at 10 mrad

p_>20MeV

10-2

10⁻³

CLICdp

10⁻²

10

 10^{-4}

Incoherent e⁺e

 10^{-1}

 θ [rad]

Experimental Conditions

- CLIC operates in bunch trains, repetition rate of 50 Hz
 - Low duty cycle
 - Possibility for power pulsing: switch detector components off between trains to reduce heat dissipation
- 312 bunches within train separated by 0.5 ns (@ 3 TeV)
- Trigger-less readout foreseen
- Time structure of the beam & background suppression drive timing requirements for detector
 - 5 ns hit time-stamping in tracking
 - 1 ns hit time resolution for calorimeters

CLIC detector CTIC detector

Detector requirements

- Momentum resolution
 - e.g. Higgs coupling to muons, leptons from BSM
 - σ_{pT}/**p_T ~ 2 × 10** ⁻⁵ **GeV** ⁻¹ above 100 GeV
- Jet energy resolution
 - e.g. separation of W/Z/H di-jets
 - $\sigma_{\rm e}$ /E ~ 5% 3.5% for jets at 50 GeV 1000 GeV
- Impact parameter resolution
 - e.g. b/c-tagging, Higgs couplings
 - σ_{rφ} ~ a ⊕ b / (p[GeV] sin ^{3/2} θ) μm
 with a = 5 μm, b = 15 μm
- Lepton identification efficiency > 95 %
- Angular coverage
 - Very forward electron and photon tagging
 - Down to θ = 10 mrad (η = 5.3)

The CLIC detector model

- Superconducting solenoid with 4T magnetic field
- Vertex detector
 - \circ ~ 3 double layers with 25 × 25 $\mu m2$ pixels
 - \circ Extremely accurate (σ < 3 μm) and light (< 0.2 % X0 per layer)
- Silicon Tracker
 - Composed of large pixels/strips
 - Outer R ~ 1.5 m
 - 5 ns hit time-stamping in tracking
- Fine grained calorimeters
 - Si-W ECAL
 - 40 layers \rightarrow 22 X₀ and 1 λ_1
 - 5 × 5 mm² Si cell size (~ 2500 m²)
 - 1 ns accuracy for calo hits
- Forward calorimeters

- Scint-Fe HCAL
 - $\bullet \qquad 60 \text{ layers} \rightarrow 7.5 \ \lambda_{_{I}}$
 - 30 × 30 mm² scintillator cell size (~ 9000 m²) +SiPM
 - 1 ns accuracy for calo hits
- very forward electron tagging and luminosity measurements
- Return yoke & muon chambers
 - Mainly for muon ID

12.9 m

Detector Technology R&D

Vertex & Tracker

Hybrid detectors CLICpix + 50 um sensor

Monolithic detectors AtlasPix_Simple

Detector integration Cooling system

Calorimeters

FCAL LumiCal silicon sensors 1.8 mm wide strips CMS HGcal silicon sensors ~1 cm² cells on 8-inch wafer

CALICE silicon PIN diodes 1x1 cm² in 6x6 matrices

CALICE scint. tiles + SiPMs 3x3 cm² cells

Simulation and optimization

- Full Geant4 detector simulation including overlay of beam-induced backgrounds
- Full reconstruction chain:
 - reconstruction of tracks and clusters
 - particle flow objects
 - jets
 - flavor tagging
- Optimization of 3 TeV CLIC detector model in full detector simulations
 - $\circ \rightarrow$ Ensure that detector performance meets requirements

Software tools widely used

Chicago workshop on the CEPC, 2019

26

Beam-induced background rejection

- $\gamma\gamma \rightarrow$ hadrons background can be suppressed by \mathbf{p}_{T} vs. time selections on individually reconstructed particles
- Identify time of physics event in the full bunch train
- Suppression via
 - Cluster time
 - Particle type 0
 - рт Ο
- Cuts adapted per detector region and beam energy
- Selection cuts reduce background from 1 TeV to 100 GeV @ 3 TeV!

Event display @ 3 TeV

Fully-hadronic ttbar before

background suppression

Chicago workshop on the CEPC, 2019

Beam-induced background rejection

- $\gamma\gamma \rightarrow$ hadrons background can be suppressed by \mathbf{p}_{τ} vs. time selections on individually reconstructed particles
- Identify time of physics event in the full bunch train
- Suppression via
 - Timing requirements 0
 - Particle type 0
 - Retaining high-p T objects 0
- Cuts adapted per detector region and beam energy
- Selection cuts reduce background from 1 TeV to 100 GeV @ 3 TeV!

- Momentum resolution
 - e.g. Higgs coupling to muons, leptons from BSM
 - σ_{pT}/**p_T ~ 2 × 10** ⁻⁵ **GeV** ⁻¹ above 100 GeV
- Jet energy resolution
 - e.g. separation of W/Z/H di-jets
 - $\sigma_{\rm E}$ /E ~ 5% 3.5% for jets at 50 GeV 1000 GeV
- Impact parameter resolution
 - e.g. b/c-tagging, Higgs couplings
 - σ_{rφ} ~ a ⊕ b / (p[GeV] sin ^{3/2} θ) μm
 with a = 5 μm, b = 15 μm
- Lepton identification efficiency > 95 %
- Angular coverage
 - Very forward electron and photon tagging
 - Down to θ = 10 mrad (η = 5.3)

dp/Np

60

40

20

—no smearing

-σ_{p₇}/p₇²=4×10⁻⁵ -σ_n /p₇²=8×10⁻⁵

- Momentum resolution
 - e.g. Higgs coupling to muons, leptons from BSM
 - σ_{pT}/**p_T ~ 2 × 10** ⁻⁵ **GeV** ⁻¹ above 100 GeV
- Jet energy resolution
 - e.g. separation of W/Z/H di-jets
 - $\sigma_{\rm E}$ /E ~ 5% 3.5% for jets at 50 GeV 1000 GeV
- Impact parameter resolution
 - e.g. b/c-tagging, Higgs couplings
 - σ_{rφ} ~ a ⊕ b / (p[GeV] sin ^{3/2} θ) μm
 with a = 5 μm, b = 15 μm
- Lepton identification efficiency > 95 %
- Angular coverage
 - Very forward electron and photon tagging
 - Down to θ = 10 mrad (η = 5.3)

- Momentum resolution
 - e.g. Higgs coupling to muons, leptons from BSM
 - σ_{pT}/**p_T ~ 2 × 10** ⁻⁵ **GeV** ⁻¹ above 100 GeV
- Jet energy resolution
 - e.g. separation of W/Z/H di-jets
 - $\sigma_{\rm E}$ /E ~ 5% 3.5% for jets at 50 GeV 1000 GeV
- Impact parameter resolution
 - e.g. b/c-tagging, Higgs couplings
 - σ_{rφ} ~ a ⊕ b / (p[GeV] sin ^{3/2} θ) μm
 with a = 5 μm, b = 15 μm
- Lepton identification efficiency > 95 %
- Angular coverage
 - Very forward electron and photon tagging
 - Down to θ = 10 mrad (η = 5.3)

- Momentum resolution
 - e.g. Higgs coupling to muons, leptons from BSM
 - σ_{pT}/**p_T ~ 2 × 10** ⁻⁵ **GeV** ⁻¹ above 100 GeV
- Jet energy resolution
 - e.g. separation of W/Z/H di-jets
 - σ_ε/**Ε ~ 5% 3.5%** for jets at 50 GeV 1000 GeV
- Impact parameter resolution
 - e.g. b/c-tagging, Higgs couplings
 - σ_{rφ} ~ a ⊕ b / (p[GeV] sin ^{3/2} θ) μm
 with a = 5 μm, b = 15 μm
- Lepton identification efficiency > 95 %
- Angular coverage
 - Very forward electron and photon tagging
 - Down to θ = 10 mrad (η = 5.3)

CLICdet parameters and performance: arXiv:1812.07337

Summary Documents

- 2012 CLIC Conceptual Design Report
 - <u>A Multi-TeV Linear Collider Based on CLIC Technology</u>
 - Towards a staged e+e- linear collider exploring the terascale
 - Physics and Detectors at CLIC
 - 2016 <u>Updated Baseline for a staged Compact Linear Collider</u>
 - 2018 Documents for the European Strategy Update
 - CLIC 2018 Summary Report
 - CLIC Project Implementation Plan
 - The CLIC Potential for New Physics
 - Detector technologies for CLIC
 - + Many supporting notes and papers
 - Two formal ESU submissions:
 - <u>http://clic.cern/european-strategy</u>

Summary & conclusions

- CLIC is a mature international project with possible start from 2035
- CLIC offers opportunity for broad precision physics program
 - 380 GeV Optimised for high precision measurements of Higgs boson and top quark
 - 1.5, 3 TeV Best sensitivity for BSM searches, rare Higgs processes and decays
- CLIC environment and physics goals lead to challenging requirements
- Detector model CLICdet optimized and validated in full simulation
- Broad and active R&D on vertex and tracking detectors
 - + synergies with CALICE and FCAL collaborations for R&D on calorimeters
- The CLICdp Collaboration has prepared comprehensive documentation on physics program, detector design and R&D activities
- Summaries have been submitted to the European Strategy

"My own visions of CLIC", artwork by Natasha de Heney, 2010

Backup

Beam-induced background rejection

- $\gamma\gamma \rightarrow$ hadrons background can be suppressed by \mathbf{p}_{T} vs. time selections on individually reconstructed particles
- Identify time of physics event in the full bunch train
- Suppression via
 - Timing requirements 0
 - Particle type 0
 - Retaining high-p T objects 0
- Cuts adapted per detector region and beam energy
- Selection cuts reduce background from 1 TeV to 100 GeV @ 3 TeV!

Event display @ 380 GeV

Fully-hadronic ttbar before

background suppression

Beam-induced background rejection

- $\gamma\gamma \rightarrow$ hadrons background can be suppressed by \mathbf{p}_{T} vs. time selections on individually reconstructed particles
- Identify time of physics event in the full bunch train
- Suppression via
 - Timing requirements 0
 - Particle type 0
 - Retaining high-p T objects 0
- Cuts adapted per detector region and beam energy
- Selection cuts reduce background from 1 TeV to 100 GeV @ 3 TeV!

Event display @ 380 GeV

Fully-hadronic ttbar after

background suppression

- Momentum resolution
 - e.g. Higgs coupling to muons, leptons from BSM 0
 - σ_{nT}/p_T ~ 2 × 10 ⁻⁵ GeV ⁻¹ above 100 GeV
- Jet energy resolution
 - e.g. separation of W/Z/H di-jets 0
 - σ_E/E ~ 5% 3.5% for jets at 50 GeV 1000 GeV
- Impact parameter resolution
 - e.g. b/c-tagging, Higgs couplings
 - σ_{ro} ~ a ⊕ b / (p[GeV] sin ^{3/2} θ) μm 0 with a = 5 μ m, b = 15 μ m
- Angular coverage
 - Lepton identification efficiency > 95 % 0
 - Very forward electron and photon tagging 0
 - Down to θ = 10 mrad (η = 5.3) 0

0.9

Charm eff.

ŚВ