CEPC workshop Chicago, 17/09/2019

CEPC Tracking R&D

- **Tracking requirements** \odot
- **Tracking detector challenges** \odot
	- **Vertex detectors** \odot
	- **Central trackers** \odot
		- **All silicon** \odot
		- **TPC** \odot
		- **Wire chamber** \odot
	- **MPGDs** \mathcal{S}
		- **Preshower** \odot
		- **Muon detectors** \odot
- **R&D programmes** S.
- **Conclusions** \odot

Circular colligers: FCC-ee **detectors**

Baseline: Silicon + TPC

- •IDEA: Silicon+Drift chamber(DCH)
- FST: all-silicon tracker
- Tracking performances:
	- VXD share common design
	- Tracker: TPC vs DCH vs Silicon

Baseline

- Δ**p^t /pt 2 ~ 2x10-5 (GeV-1)** \odot
- **Tracker must be as light as possible** \odot
- **High efficiency down to low momentum** S.
- **Identification of secondary vertices similar and better** S. **than modern LHC detectors**
- **Flavour tagging** C.
	- **Decay length** \odot
- **Excellent b/c separation (much better than LHC** Ş. **detectors)**
- **PID** for π ⁺⁻ separation from other particles S.

- **Very good spatial resolution,** S.
	- \sim 3-4 π m \odot
- **As little material as possible** \bullet
	- **Extremely thin detectors,** S.
		- \sim 50-100 π m thickness \odot
	- **1st layer as close as possible to the IP** \odot
- **Very low power consumption** Ş.
	- \leq 20 **mW/cm²**
- **Very efficient cooling** S.
- **Do we need to cool also the beam pipe?** \odot

Vertex detectors: baseline

Vertex detectors: baseline

Silicon Vertex Detector Prototype - MOST (2018-2023)

Sensor technology CMOS TowerJazz

- ← Design sensor with large area and high resolution
- + Integration of front-end electronic on sensor chip

Benefit from MOST 1 research program

Laver 1 (11 mm x 62.5 mm) Chip size: 11 mm X 20.8 mm

 $3 X 2$ layer = 6 chips

Vertex detectors: challenges

Limitation of the existing CMOS sensors

- **None of the existing CMOS sensors can fully satisfy the requirement of high-rate CEPC Vertex Detector**
- **Two major constraints for the CMOS sensor**
	- **Pixel size: should be < 25um* 25um, aiming for 16um*16um**
	- **Readout speed: bunch crossing @ 40MHz**
- **TID is also a constraint, but 1Mrad is not so difficult**

Wei Wei

ARCADIA: first prototyping

Test chip

Wafers with small different epitaxial layer \bullet thickness have been used for the production

ARCADIA: MATISSE demonstrator

- Monolithic sensor with embedded CMOS electronics.
- Compatible with a standard CMOS process
- matrix of 24 x 24 pixels organised in 4 sectors
- Analog readout with CDS
- $2x2$ mm² die, VDD=1.2V

ARCADIA: sensor architecture

DIGITAL

 $15 \mu m$

Buffer1

Buffer1 Buffers Preamp Committee Charge Inj Noise Baseline Inj Regulator

FFs

Sensors with Embedded Electronics Design (SEED)

Supported by INFN R&D

50 µm

ANALOG

DIODE

 $50 \mu m$

Buffer2

ARCADIA: Outlook

- R&D effort on DMAPS taking momentum within INFN
- Direct cooperation with a silicon foundry (LFoundry) $\overline{\bigcirc}$
- Pixel size between 10 μ and 100 μ \bigcirc
- Large scale demonstrators planned for mid-2020 \bigcirc
- Take as much profit as possible for the existing in the meanwhile \overline{C}

- **Silicon tracker** \odot
	- **Number of layers** ϵ
	- **As low as possible material budget** \odot
		- **Very thin detectors** \odot
- **TPC** \odot
	- **Ion backflow** \odot
	- **Calibration and alignment** \odot
	- **Low power consumption FEE ASIC chip** Ş.
	- **Mechanical and distortion challenges** \odot
- **Wire chamber** \odot
	- **Very long wires, ~4m** Ş.
	- **New wire materials, with or without metallic coating** Ş.
	- **Cluster counting**S.

TPC could directly provides three-dimensional space points; the gaseous detector volume gives a low material budget; and the high density of such space points enables excellent pattern recognition capability.

Why use TPC detector as the tracker detector?

- ❑ **Motivated by the H tagging and Z**
- ❑ **TPC is the perfect detector for HI collisions …(ALICE TPC…)**
- ❑ **Almost the whole volume is active**
- ❑ **Minimal radiation length (field cage, gas)**
- ❑ **Easy pattern recognition (continuous tracks)**
- ❑ **PID information from ionization measurements (dE/dx)**
- ❑ **Operating under high magnetic field**
-

❑ **MPGD as the readout Overview of TPC detector concept**

TPC detector concept:

- ❑ **Under 3 Tesla magnetic field (Momentum resolution: ~10-4 /GeV/c with TPC standalone)**
- ❑ **Large number of 3D space points(~220 along the diameter)**
- ❑ **dE/dx resolution: <5%**
- ❑ **~100 µm position resolution in rφ**
	- ❑ **~60µm for zero drift, <100µm overall**
	- ❑ **Systematics precision (<20µm internal)**
- ❑ **TPC material budget**
	- ❑ **<1X⁰ including outer field cage**
- ❑ **Tracker efficiency: >97% for pT>1GeV**
- ❑ **2-hit resolution in rφ : ~2mm**
- ❑ **Module design: ~200mm×170mm**
- ❑ **Minimizes dead space between the modules: 1-2mm**

TPC detector endplate concept

❑ **Occupancy simulation**

- ❑ **Gain×IBF refers to the number of ions that will escape the end-plate readout modules per primary ionization, obtained by the multiplication of the readout modules gain and the ion backflow reducing rate (IBF)**
- ❑ **L : the luminosity in units of 10³⁴cm-2s -1**
- ❑ **Voxel size: 1mm×6mm ×2mm @DAQ/40MHz**
- ❑ **Maximal occupancy at TPC inner most layer:** \sim 10⁻⁵ (safe)
- ❑ **Full simulation: 9 thousand Z to qq events**
- ❑ **Bhabha events: a few nb**
- ❑ **Background considered ? (Need careful designed Shielding/detector protection)**

ArXiv: 1704.04401

Pad size : 1mm×6mm Tsample : 25ns Vdrift : 80µm/ns

To conclude, the TPC will be able to be used if the Gain×IBF can be controlled to a value smaller than 5.

■ Some R&D activities

- TPC detector module -> IBF control
- TPC detector prototype -> Calibration
- Low power consumption -> FEE ASIC chip

TPC detector module @ IHEP

❑ **Study with GEM-MM module**

- ❑ **New assembled module**
- ❑ **Active area: 100 mm×100 mm**
- ❑ **X-tube ray and 55Fe source**
- ❑ **Bulk-Micromegas assembled from Saclay**
- ❑ **Standard GEM from CERN**
- ❑ **Avalanche gap of MM: 128 μm**
- ❑ **Transfer gap: 2 mm**
- ❑ **Drift length: 2 mm~200 mm**
- ❑ **pA current meter: Keithley 6517B**
- ❑ **Current recording: Auto-record interface by LabView**
- ❑ **Standard Mesh: 400 LPI**
- ❑ **High mesh: 508 LPI**

50×50 mm² 2015-2016 100×100 mm² 2017-2018 200×200 mm² 2019-

Micromegas(Saclay) GEM(CERN)

Cathode with mesh GEM-MM Detector

17/09/2019 CEPC Tracking R&D - Paolo Giacomelli

Motivation of the TPC prototype

- Study and estimation of the distortion from the IBF and primary ions with the laser calibration system
- **Main parameters**
	- Drift length: \sim 510mm, Readout active area: 200mm \times 200mm \Box
	- Integrated the laser calibration with 266nm O
	- GEMs/Micromegas as the readout □
- 1. TPC chamber
- 2. Laser calibration
- Matched to assembled in the 1.0T PCMAG \Box

Diagram of the TPC prototype with the laser calibration system

Huirong Qi

17/09/2019 CEPC Tracking R&D - Paolo Giacomelli

TPC FEE chip

- Develop a low power and highly integration front-end ASIC in 65 nm CMOS
- Each channel consists of the analog front-end (AFE) and a SAR ADC in 10b and up to 40 MSPS
- Less than 5 mW per channel

• AFE test summary

• SAR ADC test summary

Wire length problem

Electrostatic stability condition $T > \frac{C^2 V_0^2 L^2}{4 \pi \epsilon w^2}$

(Y.S. > 860 MPa): *Tmax* **> 0.83 N**

T = wire tension *C* = capacitance per unit length $V₀$ = anode-cathode voltage $L =$ wire length, $w =$ cell width

IDEA Drift Chamber: *C* **= 10 pF/m,** *V⁰* **= 1500 V,** *L* **= 4.0 m,** *w* **= 1.0 cm**

T **> 0.32 N**

- 20 µm W sense wire $(Y.S. \approx 1200 \text{ MPa})$: $T_{max} = 0.38 \text{ N}$ (marginal)
- 40 μm Al field wire (Y.S. ≈ 300 MPa): *Tmax* **= 0.38 N** (marginal) => **shorten chamber** (loss of acceptance)

=> **widen cell size** (increase occupancy)

=> **increase wire diameter** (increase multiple scattering and endplate

load)

or,

=> replace 40 μm Al with **Titanium** (Y.S. ≈ 550 MPa): *Tmax* **= 0.70 N** but Ti G5 (90%Ti-6%Al-4%V) hard to draw in such sizes ("galling phenomenon")

=> replace 40 μm Al with **35 μm Carbon monofilament**

F. Grancagnolo

New wires: Carbon monofilaments

F. Grancagnolo

C wire metal coating

BINP A. Popov V. Logashenko

HiPIMS: High-power impulse magnetron sputtering

physical vapor deposition (PVD) of thin films based on magnetron sputter deposition (extremely high power densities of the order of kW/cm² in short pulses of tens of microseconds at low duty cycle <10%)

C wire soldering **without** metal coating

Soldering of Carbon Materials Using Transition Metal Rich Alloys

Marek Burda,*^{*,†} Agnieszka Lekawa-Raus,[†] Andrzej Gruszczyk,[‡] and Krzysztof K. K. Koziol^{*,†}

⁺Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, CB3 0FS, Cambridge, U.K. and [‡]Welding Department, Silesian University of Technology, Konarskiego 18a, 44-100 Gliwice, Poland

ABSTRACT Joining of carbon materials via soldering has not been possible up to now due to lack of wetting of carbons by metals at standard soldering temperatures. This issue has been a severely restricting factor for many potential electrical/electronic and mechanical applications of nanostructured and conventional carbon materials. Here we demonstrate the formation of alloys that enable soldering of these structures. By addition of several percent $(2.5-5%)$ of transition metal such as chromium or nickel to a standard lead-free soldering tin based alloy we obtained a solder that can be applied using a commercial soldering iron at typical soldering temperatures of approximately 350 °C and at ambient conditions. The use of this solder enables the formation of mechanically strong and cleetrically conductive joints between carbon materials and, when supported by a simple two step rechnique, can successfully bond carbon structures to any metal terminal. It has been shown using optical and scanning electron microscope images as well as X-ray

Published online August 09, 2015

10.1021/acsnano.5b02176

diffraction patterns and energy dispersive X-ray mapping that the successful formation of carbon-solder bonds is possible, first, thanks to the uniform nonreactive dispersion of transition metals in the tin-based matrix. Further, during the soldering process, these free elements diffuse into the carbon—alloy border with no formation of brazing-like carbides, which would damage the surface of the carbon materials.

F. Grancagnolo

- **These gas tracking detectors are proposed for:** S.
	- **IDEA's preshower** \odot
	- **IDEA's muon detector** \odot
	- **TPC's readout** \odot
- **Large surfaces to be covered** S.
	- **Industrialization** \odot
- **Cost reduction** \odot
	- **Reduce number of channels** \mathcal{O}
	- **Cheaper electronics?** \odot

CMS GE2/1 sector m-**RWELL prototype**

H4 test beam with 150 GeV muons:

- **Voltage scan (amplification scan)**
- **Uniformity scan across the surface of the detector at 530 V (~12000 gain, still to be conditioned)**

The excellent results obtained demonstrate the great collaboration between INFN-Eltos and Rui de Oliveira's lab

 $GE2/1$ 20⁰ sector with 2 M4 μ RWells (2 m height, 1.2 m base)

 $M4 \mu$ -RWELL

M4 μ -RWELL prototype is a trapezoid of \sim 55-60x50 $cm²$ Largest μ -RWELL ever built and operated!

CMS M4 μ-RWELL: homogeneity

- **There are several R&D programmes that can and should** S. **be used for tracking R&D**
	- **CERN's EP-RD** \odot
		- **RD51, RD53 and the new R&D lines** \odot
	- **LCTPC, etc.** \odot
	- **Several EU programmes** S.
		- **The new version of AIDA-2020, AIDA++** S.
			- **Future experiments at large circular e +e - colliders** Ş. **will be one of the top priorities of this programme**
		- **FEST provides travel money to China to collaborate** \odot **on specific R&D issues**
		- **CREMLIN+ and others** \odot
- **National programmes like ARCADIA, MOST,...** \odot

- **Excellent tracking is one of the most important important** \mathcal{S} **detector requirements at CEPC**
- **Tracking detectors for CEPC could in principle be built with** \mathcal{S} **today's technology**
	- **However, several issues have to be solved and therefore a** S. **strong programme of R&D is needed**
		- **The R&D should lead to construction improvements and** \odot **cost reductions (industrialization wherever possible)**
- **Several R&D programmes are being put in place right now** ϵ
	- **None of them covers all the needed aspects, so one has to** \mathcal{S} **participate and collaborate in several programmes**
	- **These programmes provide excellent conditions for** S. **synergic collaborations and are ideal places to form the new generation of detector experts**

Backup

Vertex detectors: challenges

MOST2 architecture

• **Similar to the ATLAS ITK readout architecture: "column-drain" readout**

- **Priority based data driven readout**
- **Modification: time stamp is added at EOC whenever a new fast-or busy signal is received**
- **Dead time: 2 clk for each pixel (50ns @40MHz clk), negligible compared to the average hit rate**

• **2-level FIFO architecture**

- **L1 FIFO: In column level, to de-randomize the injecting charge**
- **L2 FIFO: Chip level, to match the in/out data rate between the core and interface**

• **Trigger readout**

- **Make the data rate in a reasonable range**
- **Data coincidence by time stamp, only the matched event will be readout**

Step 2

The essence of the designing and constructing a VERTEX DETECTOR: fit 1 GigaPixel in a Diet Coke can & keep it cool!

ØPhysics First!

impact parameter resolution

The ILC figures apply also when you go beyond the linear approximations

a depends on the single point resolution and the ratio between the innermost radius \blacktriangleright and the lever arm:

 ϵ => σ_{sp} = 3 µm when R_{in} =16 mm and R_{out} = 60 mm

[The ILD and CePC baseline figures]

 \triangleright b depends on the multiple scattering at the innermost radius: \Rightarrow thickness/layer = 0.15% X_0 [$X_0 = 9.37$ cm for Silicon]

 $[140 \mu m]$

If we look a bit around we know that Monolithic Active Pixel Sensors (MAPS) are a good starting point:

and new technologies based on high resistivity substrates are very appealing: \ast

The INFN SEED (Silicon with Embedded Electronics Development, partnership with LFound

If we look a bit around we know that Monolithic Active Pixel Sensors (MAPS) are a good starting point:

MAPS have been shown to be able to provide the required resolution with a binary read- \ast

M. Winter et al., arXiv: 1203.3750v1 (2012)

The pitch/√12 rule has been violated

Test beam results for the MIMOSA-26 sensor:

18.4 μm pitch (5.3 μm binary resolution)

* rolling shutter & end-of-column zero suppression (200 ns/pixel r.o. time) **250 mW/cm² power consumption**

The machine comes next; and we have to account for

If the time structure of the beams:

at the CepC, collisions are equally spaced (in time) with a frequency depending on the number of bunches. In one of the configurations reported in Beijing-201609, we have:

- 50 bunches at the Higgs factory energy
- 5000 bunches at the Z factory energy [where I estimated 4 kHz event rate]

for a beam Xing every 5 μs (@Higgs) to 50 ns (@Zpole) [3.6 μs is the "official" number]

In the expected Beam-induced background:

there is actually NO solid rock number and estimates have a significant dependence on the machine & final focus parameters (HongBo, 2018, Roma).

A rough figure says ≈ 2.5 hits/cm²/Xing (I believe @Higgs energies)

BUT:

- having the spectrum of the bckg particles is important to see if we have "loopers"
- we have to see how it scales with the energy
- **In the expected radiation level: RELAX!**

If we look a bit around we know that Monolithic Active Pixel Sensors (MAPS) are a good starting point:

sophisticated architectures with ON PIXEL sparsification have been designed and qualifi \ast

- **▶ 1 discriminator/pixel + 1bit memory cell**
- ⇢ analog info locally processed
- If the integration time is independent from read-out (r.o.) time
- If the r.o. time is dependent from the pixel occupancy

current power consumption at the level of 50 mW/cm²(ALPIDE)

-NIM A 765 (2014) 177 + A 785 (2015) 61 -pixel 2014 proceedings published on JINST (doi:10.1088/1748-0221/10/03/C03030)

If we look a bit around we know that Monolithic Active Pixel Sensors (MAPS) are a good starting point:

large systems have been designed and commissioned (or will be, in a short while): \star

- **2** 400 sensors
- 0.9 Pixel each
- power dissipation 170 mW/cm²

nothing but a toy compared to what is envisaged for the ITS of the ALICE experiment:

a development based on:

Dealer 180 nm) **Paramers** (Tower-Jazz 180 nm)

 \triangleright and new design (on pixel sparsification)

Vertex Detector Conclusions:

* The new technologies certainly offer unprecedented opportunities

- * Running conditions at the Z shall be carefully considered in designing the detector
- * the real CHALLENGE, to me, will be designing an architecture providing the required data evacuation rate with the MINIMUM power dissipation (<20 mW/cm²), resulting by an optimisation of the ANALOG CELL, the digital architecture, the clock distribution

But I'm confident that fun and excitement will exceed pain & fear!

Engineering run by summer 2020

- Pixel size between 10 μ and 100 μ ;
- embedded electronics with sparsed readout;
- binary readout modality for maximum rate capability, or
- analogue sampling on-pixel, digitisation on periphery;
- data-driven readout and low-power digital architecture for data and control signal transmission;
- modular architecture for a straightforward scaling of the design to a reticle-size sensor

ARCADIA

- Several test structures with different guard-ring design $\overline{\bigcirc}$
- Inversion layer may compromise guard-rings \overline{a}
- Can be partially cured with irradiation $\overline{\bigcirc}$
- Cause understood and fixed in the next release just delivered by $\overline{\Theta}$ the foundry

A. Rivetti

Huirong Qi

e +e - machine Primary N^{$_{\text{eff}}$ **is small:** \sim 30} **Pad size:1 mm×6 mm**

Photo peak and escape peak are clear! Good electron transmission. Good energy resolution.

The distortion challenges : 1) Module flatness

The modules have to be extremely flat. they can be deformed by the pressure if they are not rigid enough. This gives rise to ExB effects.

Residual in Z (2018 and 2015 MM)

Data: Ed=230V/cm, $B=0 T$

Mean of Δ ₂ [mm]

The distortion challenges : 2) field cage quality

• A simple short between two field shaping rings (as happened in ALEPH due to a tiny carbon fiber) can make a sizeable distortion

 2.8 mm

Peter Schade

TPC wall

Mechanical challenges

The mechanical design must ensure small enough deformations under weight and pressure, and electric field homogeneity at the 10⁻⁴ level.

This imposes tough constraints on the field cage rigidity, on the design (mirror stips), and on the suspension

The distortion mitigation challenge : track distortion in r ϕ 3) module edges Mean of $\Delta_{r\phi}$ [mm]

By grounding the mesh and encapsulating the anode at a positive potential, the amplification plane is an almost perfect equipotential, which allows the E-field to be very uniform, even close to the module boundary.

A reduction by an order of magnitude of the ExB distortions is observed.

 0.5

 -0.5

-1

1300

 $0.2mm$

1400

 2015 data

1500

1600

Global row radius [mm]

T. Ogawa, S. Ganjour

 $= 30$ mm

= 100mm = 500mm

1700

30mm

The dE/dx challenge

dE/dx is an essential tool for particle identification, necessary in b physics and in Higgs physics.

It has been proven to be possible with the 3 technologies (Micromegas, GEM and pixels)

Pixel allow cluster counting, which improves the achiveable resolution.

For 1.35 m electron tracks, we obtain: 4.6 % for Micromegas 4.5 % for GEMs 3.5 % for pixels

Paul Colas

The ion backflow challenge

- The possibility of gating exists only at ILC. For other colliders (continuous beam or high rate bunch crossings) gating is not possible.
- There is a natural ion backflow suppression in Micromegas, but not sufficient at the Z.
- Other possibilities are Double meshes (??), or a new anode microstructure with hole by hole defocusing amplification field : NEEDS R&D!
- More with ALICE upgrade and TPC at RHIC. More at MPGD19 at La Rochelle.

TPC challenges at CEPC

Ion Back Flow and Distortion

- ❑ **Goal:**
	- ❑ **Operate TPC at high luminosity at Z pole run**
	- ❑ **No Gating options**
- ❑ **IBF control similar with ALICE TPC upgrade**
- ❑ **~100 µm position resolution in rφ**
- ❑ **Distortions by the primary ions at CEPC are negligible**
- □ Manu ions discs co-exist and distorte **the path of the seed electrons**
- ❑ **The ions cleaned during the ~us period continuously**
- ❑ **Continuous device for the ions**
- ❑ **Long working time**

Amplification ions from the endplate @CEPC

Comparison of ALICE TPC and CEPC TPC

Muon detector Detector length 1300 cm Detector height 1100 cur Preshower **Dual Readout Calorimeter** DCH Rout = 200 cm $DCH z = \pm 200$ cm $DCH Rin = 35 cm$ **VTX** Cal Rin = 250 cm Silico<mark>n</mark> wrapper Cal Rout = 450 cm Yoke 100 cm Magnet $z = \pm 300$ cm

In the IDEA concept, uRWell detectors are foreseen for the preshower and the muon detector.

Similar in size, 50x50 cm², but with different strip pitch, 400 μ m in the preshower and 1500 μ m in the muon detector.