CEPC workshop Chicago, 17/09/2019

CEPC Tracking R&D

- Tracking requirements
- Tracking detector challenges
 - Vertex detectors
 - Central trackers
 - All silicon
 - **TPC**
 - Wire chamber
 - MPGDs
 - Preshower
 - Muon detectors
- R&D programmes
- Conclusions

detectors

Baseline: Silicon + TPC

- IDEA: Silicon+Drift chamber(DCH)
- FST: all-silicon tracker
- Tracking performances:
 - VXD share common design
 - Tracker: TPC vs DCH vs Silicon

Baseline

- △ $p_t/p_t^2 \sim 2x10^{-5}$ (GeV⁻¹)
- Tracker must be as light as possible
- High efficiency down to low momentum
- Identification of secondary vertices similar and better than modern LHC detectors
- Flavour tagging
 - Decay length
- Excellent b/c separation (much better than LHC detectors)
- **PID** for π^{+-} separation from other particles

- Very good spatial resolution,
 - **⊶ ~3-4** π**m**
- As little material as possible
 - Extremely thin detectors,
 - ~50-100 πm thickness
 - Ist layer as close as possible to the IP
- Very low power consumption
 - <20 mW/cm²
- Very efficient cooling
- Do we need to cool also the beam pipe?

Vertex detectors: baseline

25 cm **Baseline Pixel Detector Layout 3-layers of double-sided pixel sensors** 12 cm ILD-like layout + Innermost layer: $\sigma_{SP} = 2.8 \ \mu m$ + Polar angle $\theta \sim 15$ degrees Implemented in GEANT4 simulation framework (MOKKA) CMOS pixel sensor (MAPS) PMOS NMOS Integration diode N+/epi / Reset diode P+/Nwell N well R(mm)Readout time(us) |z|(mm) $|cos\theta|$ $\sigma(\mu m)$ Depletion Region 0.97 16 62.5 2.8 20 Layer 1 adde Epi 1 18 0.96 Layer 2 62.5 1 - 106 Sub Minus voltage 0~-6V 37 125.0 0.96 20 Layer 3 4 adde 2 Integrated sensor and readout electronics on the 39 125.0 0.95 20 4 Layer 4 same silicon bulk with "standard" CMOS process: .adde 58 Layer 5 125.0 0.91 4 20 - low material budget, 3 60 125.0 0.90 4 20 Layer 6 - low power consumption, - low cost ...

Vertex detectors: baseline

Silicon Vertex Detector Prototype – MOST (2018–2023)

Sensor technology CMOS TowerJazz

- Design sensor with large area and high resolution
- Integration of front-end electronic on sensor chip

Benefit from MOST 1 research program

Layer 1 (11 mm x 62.5 mm) Chip size: 11 mm X 20.8 mm

3 X 2 layer = 6 chips

Wei Wei

Vertex detectors: challenges

Limitation of the existing CMOS sensors

- None of the existing CMOS sensors can fully satisfy the requirement of high-rate CEPC Vertex Detector
- Two major constraints for the CMOS sensor
 - Pixel size: should be < 25um* 25um, aiming for 16um*16um
 - Readout speed: bunch crossing @ 40MHz
- TID is also a constraint, but 1Mrad is not so difficult

	ALPIDE	ATLAS-MAPS (MONOPIX / MALTA)	MIMOSA	JadePix/ MIC4 (MOST1)
Pixel size	\checkmark	Х	\checkmark	\checkmark
Readout Speed	X	\checkmark	Х	X
TID	X (?)	\checkmark	\checkmark	To be tested

Wei Wei

ARCADIA: first prototyping

Technology	110 nm double side CMOS technology
Metal layers	6
Size	2 X 2 mm ²

Test chip

 Wafers with small different epitaxial layer thickness have been used for the production

ARCADIA: MATISSE demonstrator

- Monolithic sensor with
 embedded CMOS
 electronics.
- Compatible with a standard
 CMOS process
- matrix of 24 x 24 pixels
 organised in 4 sectors
- Analog readout with CDS
- ♦ 2x2 mm² die, VDD=1.2V

ARCADIA: sensor architecture

Sensors with Embedded Electronics Design (SEED)

Supported by INFN R&D Committee

ARCADIA: Outlook

- R&D effort on DMAPS taking momentum within INFN
- Direct cooperation with a silicon foundry (LFoundry)
- Pixel size between 10 μ and 100 μ
- Large scale demonstrators planned for mid-2020
- Take as much profit as possible for the existing in the meanwhile

- Silicon tracker
 - Number of layers
 - As low as possible material budget
 - Very thin detectors
- Jer TPC
 - Ion backflow
 - Calibration and alignment
 - Low power consumption FEE ASIC chip
 - Mechanical and distortion challenges
- Wire chamber
 - Very long wires, ~4m
 - New wire materials, with or without metallic coating
 - Cluster counting

TPC could directly provides three-dimensional space points; the gaseous detector volume gives a low material budget; and the high density of such space points enables excellent pattern recognition capability.

Why use TPC detector as the tracker detector?

- Motivated by the H tagging and Z
- TPC is the perfect detector for HI collisions
 ...(ALICE TPC...)
- Almost the whole volume is active
- Minimal radiation length (field cage, gas)
- Easy pattern recognition (continuous tracks)
- PID information from ionization measurements (dE/dx)
- Operating under high magnetic field
- MPGD as the readout

Overview of TPC detector concept

TPC detector concept:

- Under 3 Tesla magnetic field (Momentum resolution: ~10⁻⁴/GeV/c with TPC standalone)
- Large number of 3D space points(~220 along the diameter)
- □ dE/dx resolution: <5%
- ~100 μm position resolution in rφ
 - □ ~60µm for zero drift, <100µm overall</p>
 - □ Systematics precision (<20µm internal)
- **TPC material budget**
 - <1X₀ including outer field cage
- Tracker efficiency: >97% for pT>1GeV
- 2-hit resolution in rφ : ~2mm
- Module design: ~200mm×170mm
- Minimizes dead space between the modules:
 1-2mm

TPC detector endplate concept

Occupancy simulation

- Gain×IBF refers to the number of ions that will escape the end-plate readout modules per primary ionization, obtained by the multiplication of the readout modules gain and the ion backflow reducing rate (IBF)
- $\Box \quad L: the luminosity in units of 10^{34} cm^{-2} s^{-1}$
- Voxel size: 1mm×6mm ×2mm
 @DAQ/40MHz
- Maximal occupancy at TPC inner most layer: ~10⁻⁵ (safe)
- □ Full simulation: 9 thousand Z to qq events
- Bhabha events: a few nb
- Background considered ? (Need careful designed Shielding/detector protection)

ArXiv: 1704.04401

Pad size : $1mm \times 6mm$ T_{sample} : 25ns V_{drift} : $80\mu m/ns$

To conclude, the TPC will be able to be used if the Gain×IBF can be controlled to a value smaller than 5.

Some R&D activities

- TPC detector module -> IBF control
- TPC detector prototype -> Calibration
- Low power consumption -> FEE ASIC chip

TPC detector module @ IHEP

Study with GEM-MM module

- New assembled module
- □ Active area: 100 mm×100 mm
- □ X-tube ray and 55Fe source
- Bulk-Micromegas assembled from Saclay
- Standard GEM from CERN
- Avalanche gap of MM: 128 μm
- Transfer gap: 2 mm
- Drift length: 2 mm~200 mm
- pA current meter: Keithley 6517B
- Current recording: Auto-record interface by LabView
- Standard Mesh: 400 LPI
- □ High mesh: 508 LPI

Micromegas(Saclay)

GEM(CERN)

Cathode with mesh

GEM-MM Detector

CEPC Tracking R&D - Paolo Giacomelli

Motivation of the TPC prototype

- Study and estimation of the distortion from the IBF and primary ions with the laser calibration system
- Main parameters
 - □ Drift length: ~510mm, Readout active area: 200mm×200mm
 - Integrated the laser calibration with 266nm
 - GEMs/Micromegas as the readout

- 1. TPC chamber
- 2. Laser calibration
- Matched to assembled in the 1.0T PCMAG

Diagram of the TPC prototype with the laser calibration system

Huirong Qi

CEPC Tracking R&D - Paolo Giacomelli

TPC FEE chip

- Develop a low power and highly integration front-end ASIC in 65 nm CMOS
- Each channel consists of the analog front-end (AFE) and a SAR ADC in 10b and up to 40 MSPS
- Less than 5 mW per channel

• AFE test summary

SAR ADC test summary

	Specifications	Test Results		Specifications	Test Results
Gain	10mV/fC	10.5mV/fC	Sampling rate	40 MSPS	50 MSPS
Dynamic Range	120fC	>120fC	Resolution	10 bit	10 bit
INL	<1%	0.41%	INL	<0.65 LBS	<0.5 LSB
Power consumption	2.50mW/ch	2.18mW/ch	DNL	<0.6 LSB	<0.5 LSB
ENC	500e @ 10pF	448e @ 10pF	ENOB	>9 bit	9.18 bit
Xtalk	<1%	<0.36%	Power consumption	<2.5 mW/ch	1 mW/ch

Wire length problem

Electrostatic stability condition $T > \frac{C^2 V_0^2 L^2}{4\pi \epsilon w^2}$

(Y.S. > 860 MPa): *T_{max}* > 0.83 N

T = wire tensionC = capacitance per unit length V_0 = anode-cathode voltage L = wire length, w = cell width

DEA Drift Chamber: C = 10 pF/m, $V_0 = 1500 \text{ V}$, L = 4.0**m**, W **1.0 cm**

T > 0.32 N

- 20 μ m W sense wire (Y.S. \approx 1200 MPa): $T_{max} = 0.38$ N (marginal)
- 40 μ m Al field wire (Y.S. \approx 300 MPa): $T_{max} = 0.38$ N (marginal)
 - => shorten chamber (loss of acceptance)
 - => widen cell size (increase occupancy)
 - => increase wire diameter (increase multiple scattering and endplate

load)

or,

=> replace 40 μ m Al with **Titanium** (Y.S. \approx 550 MPa): $T_{max} = 0.70$ N but Ti G5 (90%Ti-6%Al-4%V) hard to draw in such sizes ("galling phenomenon")

=> replace 40 µm Al with 35 µm Carbon monofilament

F. Grancagnolo

New wires: Carbon monofilaments

F. Grancagnolo

C wire metal coating

A. Popov V. Logashenko

BINP

HiPIMS: High-power impulse magnetron sputtering

physical vapor deposition (PVD) of thin films based on magnetron sputter deposition (extremely high power densities of the order of kW/cm² in short pulses of tens of microseconds at low duty cycle <10%)

C wire soldering without metal coating

Soldering of Carbon Materials Using Transition Metal Rich Alloys

Marek Burda,^{*,†} Agnieszka Lekawa-Raus,[†] Andrzej Gruszczyk,[‡] and Krzysztof K. K. Koziol^{*,†}

[†]Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, CB3 OFS, Cambridge, U.K. and [‡]Welding Department, Silesian University of Technology, Konarskiego 18a, 44-100 Gliwice, Poland

ABSTRACT Joining of carbon materials *via* soldering has not been possible up to now due to lack of wetting of carbons by metals at standard soldering temperatures. This issue has been a severely restricting factor for many potential electrical/electronic and mechanical applications of nanostructured and conventional carbon materials. Here we demonstrate the formation of alloys that enable soldering of these structures. By addition of several percent (2.5–5%) of transition metal such as chromium or nickel to a standard lead-free soldering tin based alloy we obtained a solder that can be applied using a commercial soldering iron at typical soldering temperatures of approximately 350 °C and at ambient conditions. The use of this solder enables the formation of mechanically strong and electrically conductive joints between carbon materials and, when supported by a simple two step technique, can successfully bond carbon structures to any metal terminal. It has been shown using optical and scanning electron microscope images as well as X-ray

diffraction patterns and energy dispersive X-ray mapping that the successful formation of carbon—solder bonds is possible, first, thanks to the uniform nonreactive dispersion of transition metals in the tin-based matrix. Further, during the soldering process, these free elements diffuse into the carbon—alloy border with no formation of brazing-like carbides, which would damage the surface of the carbon materials.

Published online August 09, 2015 10.1021/acsnano.5b02176

- These gas tracking detectors are proposed for:
 - IDEA's preshower
 - IDEA's muon detector
 - TPC's readout
- Large surfaces to be covered
 - Industrialization
- Cost reduction
 - Reduce number of channels
 - Cheaper electronics?

CMS GE2/1 sector μ -RWELL prototype

H4 test beam with 150 GeV muons:

- Voltage scan (amplification scan)
- Uniformity scan across the surface of the detector at 530
 V (~12000 gain, still to be conditioned)

The **excellent** results obtained demonstrate the great collaboration between INFN-Eltos and Rui de Oliveira's lab

GE2/1 20⁰ sector with 2 M4 μRWells (2 m height, 1.2 m base)

M4 μ-RWELL

M4 μ -RWELL prototype is a trapezoid of ~55-60x50 cm² Largest μ -RWELL ever built and operated!

CMS M4 µ-RWELL: homogeneity

- There are several R&D programmes that can and should be used for tracking R&D
 - CERN's EP-RD
 - RD51, RD53 and the new R&D lines
 - LCTPC, etc.
 - Several EU programmes
 - The new version of AIDA-2020, AIDA++
 - Future experiments at large circular e⁺e⁻ colliders will be one of the top priorities of this programme
 - FEST provides travel money to China to collaborate on specific R&D issues
 - CREMLIN+ and others
- National programmes like ARCADIA, MOST,...

- Excellent tracking is one of the most important important detector requirements at CEPC
- Tracking detectors for CEPC could in principle be built with today's technology
 - However, several issues have to be solved and therefore a strong programme of R&D is needed
 - The R&D should lead to construction improvements and cost reductions (industrialization wherever possible)
- Several R&D programmes are being put in place right now
 - None of them covers all the needed aspects, so one has to participate and collaborate in several programmes
 - These programmes provide excellent conditions for synergic collaborations and are ideal places to form the new generation of detector experts

Backup

Vertex detectors: challenges

MOST2 architecture

• Similar to the ATLAS ITK readout architecture: "column-drain" readout

- Priority based data driven readout
- Modification: time stamp is added at EOC whenever a new fast-or busy signal is received
- Dead time: 2 clk for each pixel (50ns @40MHz clk), negligible compared to the average hit rate

• 2-level FIFO architecture

- L1 FIFO: In column level, to de-randomize the injecting charge
- L2 FIFO: Chip level, to match the in/out data rate between the core and interface

• Trigger readout

- Make the data rate in a reasonable range
- Data coincidence by time stamp, only the matched event will be readout

Step 2

The essence of the designing and constructing a VERTEX DETECTOR: fit 1 GigaPixel in a Diet Coke can & keep it cool!

Physics First!

ILD DBD 2012

impact parameter resolution

Accelerator	a $[\mu m]$	b $[\mu m \cdot GeV/c]$	
LEP	25	70	
SLC	8	33	
LHC	12	70	
RHIC-II	13	19	
ILC	< 5	< 10	ILD LOI 2009

The ILC figures apply also when you go beyond the linear approximations

a depends on the single point resolution and the ratio between the innermost radius and the lever arm:

=> σ_{sp} = 3 µm when R_{in} =16 mm and R_{out} = 60 mm

[The ILD and CePC baseline figures]

b depends on the multiple scattering at the innermost radius:
 => thickness/layer = 0.15% X₀ [X₀ = 9.37 cm for Silicon]

[140 µm]

If we look a bit around we know that Monolithic Active Pixel Sensors (MAPS) are a good starting point:

* and new technologies based on high resistivity substrates are very appealing:

The INFN SEED (Silicon with Embedded Electronics Development, partnership with LFou

If we look a bit around we know that Monolithic Active Pixel Sensors (MAPS) are a good starting point:

* MAPS have been shown to be able to provide the required resolution with a binary read

M. Winter et al., arXiv: 1203.3750v1 (2012)

The pitch/ $\sqrt{12}$ rule has been violated

Test beam results for the MIMOSA-26 sensor:

18.4 µm pitch (5.3 µm binary resolution)

rolling shutter & end-of-column zero suppression (200 ns/pixel r.o. time)

250 mW/cm² power consumption

The machine comes next; and we have to account for

the time structure of the beams:

at the CepC, collisions are equally spaced (in time) with a frequency depending on the number of bunches. In one of the configurations reported in Beijing-201609, we have:

- 50 bunches at the Higgs factory energy
- 5000 bunches at the Z factory energy [where I estimated 4 kHz event rate]

for a beam Xing every 5 µs (@Higgs) to 50 ns (@Zpole) [3.6 µs is the "official" number]

the expected Beam-induced background:

there is actually NO solid rock number and estimates have a significant dependence on the machine & final focus parameters (HongBo, 2018, Roma).

A rough figure says ≈ 2.5 hits/cm²/Xing (I believe @Higgs energies)

BUT:

- having the spectrum of the bckg particles is important to see if we have "loopers"
- we have to see how it scales with the energy
- the expected radiation level: RELAX!

M. Caccia

If we look a bit around we know that Monolithic Active Pixel Sensors (MAPS) are a good starting point:

sophisticated architectures with ON PIXEL sparsification have been designed and qualified

- 1 discriminator/pixel + 1 bit memory cell
- ---> analog info locally processed
- the integration time is independent from read-out (r.o.) time
- ▶ the r.o. time is dependent from the pixel occupancy

current power consumption at the level of 50 mW/cm² (ALPIDE)

-NIM A 765 (2014) 177 + A 785 (2015) 61 -pixel 2014 proceedings published on JINST (doi:10.1088/1748-0221/10/03/C03030) If we look a bit around we know that Monolithic Active Pixel Sensors (MAPS) are a good starting point:

* large systems have been designed and commissioned (or will be, in a short while):

- ▶ 400 sensors
- ▶ 0.9 Pixel each
- power dissipation 170 mW/cm²

nothing but a toy compared to what is envisaged for the ITS of the ALICE experiment:

	σ_{sp}	t _{r.o.}	Dose	Fluency	T_{op}	Power	Active area
STAR-PXL	$<$ 4 μm	$<$ 200 μs	150 kRad	$3{\cdot}10^{12}~{ m n}_{eq}$ /cm 2	30-35°C	160 mW/cm 2	$0.15\mathrm{m}^2$
ITS-in	\lesssim 5 μm	\lesssim 30 μs	2.7 MRad	1.7 \cdot 10 13 n $_{eq}$ /cm 2	30°C	$<$ 300 mW/cm 2	$0.17 \mathrm{~m}^2$
ITS-out	\lesssim 10 μm	\lesssim 30 μs	100 kRad	1·10 12 n $_{eq}$ /cm 2	30°C	$<$ 100 mW/cm 2	\sim 10 m 2

a development based on:

new technologies (Tower-Jazz 180 nm)

and new design (on pixel sparsification)

Vertex Detector Conclusions:

* The new technologies certainly offer unprecedented opportunities

- Running conditions at the Z shall be carefully considered in designing the detector
- * the real CHALLENGE, to me, will be designing an architecture providing the required data evacuation rate with the MINIMUM power dissipation (<20 mW/cm²), resulting by an optimisation of the ANALOG CELL, the digital architecture, the clock distribution

But I'm confident that fun and excitement will exceed pain & fear!

Engineering run by summer 2020

- Pixel size between 10 μ and 100 μ ;
- embedded electronics with sparsed readout;
- binary readout modality for maximum rate capability, or
- analogue sampling on-pixel, digitisation on periphery;
- data-driven readout and low-power digital architecture for data and control signal transmission;
- modular architecture for a straightforward scaling of the design to a reticle-size sensor

- Several test structures with different guard-ring design
- Inversion layer may compromise guard-rings
- Can be partially cured with irradiation
- Cause understood and fixed in the next release just delivered by the foundry

A. Rivetti 17/09/2019

e⁺e⁻ machine Primary N_{eff} is small: ~30 Pad size:1 mm×6 mm Photo peak and escape peak are clear! Good electron transmission. Good energy resolution.

The distortion challenges : 1) Module flatness

The modules have to be extremely flat. they can be deformed by the pressure if they are not rigid enough. This gives rise to ExB effects.

Residual in Z (2018 and 2015 MM)

Data : Ed=230V/cm, B=0 T

Paul Colas

The distortion challenges : 2) field cage quality

• A simple short between two field shaping rings (as happened in ALEPH due to a tiny carbon fiber) can make a sizeable distortion

 $2.8 \,\mathrm{mm}$

Peter Schade

TPC wall

Mechanical challenges

The mechanical design must ensure small enough deformations under weight and pressure, and electric field homogeneity at the 10⁻⁴ level.

This imposes tough constraints on the field cage rigidity, on the design (mirror stips), and on the suspension

The distortion mitigation challenge : track distortion in ro 3) module edges Mean of $\Delta_{r\varphi}$ [mm]

By grounding the mesh and encapsulating the anode at a positive potential, the amplification plane is an almost perfect equipotential, which allows the E-field to be very uniform, even close to the module boundary.

A reduction by an order of magnitude of the ExB distortions is observed.

0.5

-0.5

1300

0.2mm

1400

2015 data

1500

1600

Global row radius [mm]

T. Ogawa, S. Ganjour

= 30 mm

= 100mm = 500mm

1700

30mm

The dE/dx challenge

dE/dx is an essential tool for particle identification, necessary in b physics and in Higgs physics.

It has been proven to be possible with the 3 technologies (Micromegas, GEM and pixels)

Pixel allow cluster counting, which improves the achiveable resolution.

For 1.35 m electron tracks, we obtain: 4.6 % for Micromegas 4.5 % for GEMs 3.5 % for pixels

Paul Colas

The ion backflow challenge

- The possibility of gating exists only at ILC. For other colliders (continuous beam or high rate bunch crossings) gating is not possible.
- There is a natural ion backflow suppression in Micromegas, but not sufficient at the Z.
- Other possibilities are Double meshes (??), or a new anode microstructure with hole by hole defocusing amplification field : NEEDS R&D!
- More with ALICE upgrade and TPC at RHIC. More at MPGD19 at La Rochelle.

TPC challenges at CEPC

Ion Back Flow and Distortion

- **Goal:**
 - Operate TPC at high luminosity at Z pole run
 - No Gating options
- IBF control similar with ALICE TPC upgrade
- \sim ~100 µm position resolution in r ϕ
- Distortions by the primary ions at CEPC are negligible
- Manu ions discs co-exist and distorted the path of the seed electrons
- The ions cleaned during the ~us period continuously
- Continuous device for the ions
- **Long working time**

Amplification ions from the endplate @CEPC

		ALICE TPC	CEPC TPC
1	Maximum readout rate	>50kHz@pp	w.o BG?
d	Gating to reduce ions	No Gating	No Gating
	Continuous readout	No trigger	Trigger?
	IBF control	Build-in	Build-in
	IBF*Gain	<10	<5
	Calibration system	Laser	NEED

Comparison of ALICE TPC and CEPC TPC

Muon detector Detector length 1300 cm Detector height 1100 cm Preshower **Dual Readout Calorimeter** DCH Rout = 200 cmDCH $z = \pm 200$ cm DCH Rin = 35 cmVTX Cal Rin = 250 cmSilicon wrapper Cal Rout = 450 cmYoke 100 cm Magnet $z = \pm 300$ cm

In the IDEA concept, μ RWell detectors are foreseen for the preshower and the muon detector.

Similar in size, 50x50 cm², but with different strip pitch, 400 μ m in the preshower and 1500 μ m in the muon detector.

17/09/2019