Machine Learning
for (Future) Colliders

Ben Hooberman,
University of lllinois at Urbana-Champaign

' Sept 18, 2019 University of Chicago



Outline

Classification techniques at colliders

Brief overview of neural networks

Machine learning use cases at (future) colliders
— Fast simulation

— Tracking with unsupervised learning

— Jet classification

— Particle ID

— Event-based classification

Summary
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Intro: Classification at Colliders

1

e T
1 t
A 1
nearby VS. nearby
tracks tracks
prompt electron jet — electron fake
(signal) (background)

How do we identify electrons at LHC?
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. Classification Techniques at Colliders

1. Cut-based selection

— Apply requirements on
human-designed features

ATLAS Run 1 electron features [1]:

Category Description Variable
loose
Acceptance In| < 2.47 Pt N
. . o gy o ~ 1
Hadronic leakage In |p| < 0.8 and |p| > 1.37: ratio of E7 in the first ! Rhad. 1
layer of the hadronic calorimeter to E1 of the EM :
cluster !
In08 < |p| < 1.37: ratio of Et in whole hadronic ! Rhad
calorimeter to Et of the EM cluster !
Middle layer of the EM Ratio of energies in 3 x 7 cells over 7 x 7 cells IRy
. . 1
Lateral width of the shower Iowp
Front layer of the EM Total shower width 1 waa
. spn . 1 y
Energy difference of the largest and second largest ! Entio
energy deposits in the cluster divided by their sum !
Track quality and track—cluster matching Number of hits in the pixel detector (>0) !
Number of hits in the silicon detectors (=7) :
1
|An| between the cluster position in the first layer 1 Am
and the extrapolated track (<0.015) \ /

[1] EPJC 74 (2014) 2941
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https://link.springer.com/article/10.1140/epjc/s10052-014-2941-0

Classification Techniques at Colliders

1. Cut-based selection
— Apply requirements on

human-designed features ATLAS Run 2 electron likelihood [1]
€ 009 ATLASSimuaton 4
- . . S gogf f5=13TeV E
2. Multi-Variate Algorithms (MVA) 5 "t soceve<scev.pios E
— Combine features using neural networks, ‘{? 0.06F — Signal E
boosted decision trees, likelihoods, etc. - 005E ..oo... Background E
— Exploit correlations between features 0.04 E
0.03 e =
0.02F =
001F 7 s
Y =T R PR et 1 L
-4 -3 -2 -1 0 1 2

Log-transformed likelihood discriminant

[1] EPJC 79 (2019) 639
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https://link.springer.com/article/10.1140/epjc/s10052-019-7140-6

Classification Techniques at Colliders

single particle showers in a
] high-granularity 3D calorimeter
1. Cut-based selection :

— Apply requirements on
human-designed features

2- Mu Iti-variate Algorith ms (MVA) electrom;gnetic shower hadronic shower

— Combine features using neural networks,
boosted decision trees, likelihoods, etc. e vs. n* ROC curve [1]
— Exploit correlations between features ? 0 r\
O 09, improved
§ performance
T 08!
3. Deep Learning €
— Feed Iqw-level data (e.g. calorimeter B —— DNN (cells)
cells) directly to deep neural networks o - DNN (features)
—— BDT
— Poten’fial tq exploit information not 05 0T o5 o3 04 o5

[1] BH, Farbin, Khattak, Pacela, Pierini, Vlimant, Spiropulu, Wei, Proceedings of the Deep Learning
for Physical Sciences Workshop at Neural Information and Processing Systems (NIPS17)
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https://dl4physicalsciences.github.io/

Classification Techniques at Colliders

1. Cut-based selection

— Apply requirements on
human-designed features

machine learning
2. Multi-Variate Algorithms (MVA)

— Combine features using neural networks,
boosted decision trees, likelihoods, etc.

— Exploit correlations between features

3. Deep Learning

— Feed low-level data (e.g. calorimeter
cells) directly to deep neural networks

— Potential to exploit information not
contained in features

e signal efficiency

single particle showers in a

high-granularity 3D calorimeter
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e vs. t* ROC curve [1]

N
improved
performance
— DNN (cells)
DNN (features)
e BDT
00 0.1 0.2 0.3 04 05

n* background efficiency

[1] BH, Farbin, Khattak, Pacela, Pierini, Vlimant, Spiropulu, Wei, Proceedings of the Deep Learning
for Physical Sciences Workshop at Neural Information and Processing Systems (NIPS17)
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https://dl4physicalsciences.github.io/

Example: “In-painting” with Deep Learning [1]

1

corrupted image “in-painted” image
using deep neural networks [2]

deep
learning 5‘

« Make progress by understanding the structure of the data
— Not just more computational power and larger datasets

) ) [2] Ulyanov, Vedaldi, Lempitsky,
[1] from slides by Jessie Thaler “Deep Image Prior,” 1711.10925
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https://arxiv.org/abs/1711.10925
https://indico.cern.ch/event/813845/contributions/3394465/attachments/1890829/3118217/jthaler_USATLAS_UMass_ML.pdf

Machine Learning at Colliders

T — 3-prong [1]

0 — yy [1]

& %:

« Particle detectors record enormous volumes of complex 3D “images”
» Multiple sub-detectors, cell sizes, complex n-dependence, 3D structure, etc...
» Use machine learning techniques to exploit all available information

I Sept 18, 2019 University of Chicago [1] CEPC CDR Vol. i



http://cepc.ihep.ac.cn/CEPC_CDR_Vol2_Physics-Detector.pdf

Neural Network Architectures

* Fully-Connected Networks (FCN)

— Multiple layers of fully inter-connected
neurons with variable weights

— Structure-agnostic — widely applicable

can be...

N N

features

Q
N KLY ROSSAA RS
7 e e SN
NS BN NN NN e
O~ R A ~SSONOR %
SO e X A QP 7 @) 2N\
O r X P\'O:‘{/ KRS ‘\‘,\"!5 L ( “)
e ) AR
2 Yol N L
RO i LI (m)
N Vi X 2 & X
LR V) KRR N\ 7/ I EORAR A\ // Y
low-level data LN Ny
RIS NN BT SENIN A KT RN /
¥ Y/ ¥

””’X‘}&g}i\\‘//yfffi S
AN @ 28\ @ 28N
0

(calo cells, track / cluster /
particle flow p4’s, etc.)

|
input hidden output
layer layers layer
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Neural Network Architectures

Convolved
Convolutions Feature Layers

. Convolutional Neural Networks (CNN) b
— Specialized layers (“convolutional filters”) —== Max-Pooling
identify structures at different scales W WZevent
— Computer vision / imaging applications Repeat
— Assumes fixed-length input data . :
gih inp W —jj QCD jet

P -

10
9
1

[1] de Oliveira, Kagan, Mackey, Nachmann, Schwartzman,
“Jet Images — Deep Learning Edition”, JHEPQ7 (2016) 069
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https://link.springer.com/article/10.1007/JHEP07(2016)069

Neural Network Architectures

Convolved
Convolutions Feature Layers

« Convolutional Neural Networks (CNN)

— Specialized layers (“convolutional filters”) Max-Pooling
identify structures at different scales W WZevent
— Computer vision / imaging applications Repeat

— Assumes fixed-length input data .
u X gth inpu Woj

INPUT ~ CONV  POOL CONV POOL FC OUTPUT
q) ]

0.5

oit oo °
explol S Bk N
extensive Bird: 3
computer Jaaal anl
vision R&D | Dog: L N
Cat: 91%
i Sirc: [1] de Oliveira, Kagan, Mackey, Nachmann, Schwartzman,
Boat: [T “Jet Images — Deep Learning Edition”, JHEPQ7 (2016) 069
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https://link.springer.com/article/10.1007/JHEP07(2016)069

Neural Network Architectures

* Recurrent Neural Networks (RNN)

— Cyclical structures allow for
variable-length input data

» e.g. Particle Flow Candidate p4’s

— Language processing applications

“‘pm_pt3.5_etal.1_phi0.2 pp_pt5.6_eta0.3_phii1.8

exploits extensive language processing and
translation R&D (e.g. google translate)

Pt T T
A = [APlAPA——]A]
R S i
A

bl I

jet «—— sentence
constituents «—— words
type, p1, N, ® «— letters

pp_pt3.5_etal.1_phii1.2.”

Louppe, Cho, Becot, Cranmer, QCD-Aware RNNs for Jet Physics, 1702.00748
Cheng, RNNs for Quark/Gluon Tagging, CSBS (2018) 2:3
ATLAS, b-tagging with RNNs, ATL-PHYS-PUB-2017-003
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https://arxiv.org/abs/1702.00748
https://link.springer.com/article/10.1007%2Fs41781-018-0007-y
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2017-003/

Neural Network Architectures

generated output images
(for 3 ATLAS ECAL layers)

» Generative Adversarial Networks (GAN)

— Generate ensembles of pseudo-data
P Paganini, de Oliveira, Nachman, CaloGAN for

— Fast simulation applications 3D particle showers, PRD 97, 014021 (2018)
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.97.014021

ML Use Cases at Colliders

—_

Fully-Connected Networks (FCN)

— Multiple layers of fully inter-connected
neurons with variable weights

— Structure-agnostic — widely applicable

Convolutional Neural Networks (CNN)

— Specialized layers (“convolutional filters”)
identify structures at different scales

— Computer vision / imaging applications

— Assumes fixed-length input data

Recurrent Neural Networks (RNN)
— Cyclical structures allow for
variable-length input data
» e.g. Particle Flow Candidate p4’s
— Language processing applications

—_—

Generative Adversarial Networks (GAN)
— (Generate ensembles of pseudo-data
— Fast simulation applications

classification

* objects: jet classification, particle ID, etc.

- events: ttH(bb) vs. tt + bb, SUSY vs. tt , etc.

* “supervised” (labeled data) or “unsupervised”
=

measurements with regression

* objects: jet and lepton energies and angles
- events: total / hadronic / missing energy, my

_ fast simulation
e.g. particle showers in calorimeters

—_—
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Collider Analysis Flow Chart

MC data physics!
1. Generation 4. Analysis
of truth information of physics objects

Simulation

R 3. Reconstruction
of physics objects
Simulateq : ; Tracks p y J
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http://cepc.ihep.ac.cn/CEPC_CDR_Vol2_Physics-Detector.pdf

Machine Learning Use Cases

1. Generation
of truth information

MC

[ 1]

Physics
models

]

Wizard

Parton

Pythia
fragmentation

MCParticle

Simulation
(MokkaPlus)

L

Simulated
detector hits

\ { Digitization ;

data

‘ Detector |

(o)

S

< Analysis

Detector hits

physics!

=

Physics
parameters

>

Physics
objects

Reconstructed
particle

High level
reconstruction
PFA(Arbor)

Tracks

4. Analysis
of physics objects

event classification
(e.g. ttH vs. tt+bb)

event regression
(e-g- MHiggs)

3. Reconstruction
of physics objects

object classification
(e.g. particle ID, b-tagging)

object regression
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unsupervised classification
(e.g. tracking, clustering,
track-cluster matching)
University of Chicago CEPC CDR Vol. Ii 17


http://cepc.ihep.ac.cn/CEPC_CDR_Vol2_Physics-Detector.pdf

Fast Simulation with GANs

» Future colliders will require enormous MC event samples:

CEPC operation plan:

Operation NE) L per IP Years Total [ L Event
mode (GeV) (10**cm—2%s71) (ab™1, 2 IPs) yields
H 240 3 7 5.6 1><106
Z 91.2 32 (%) 2 16 7 x 10"
WrW-— 158-172 10 1 2.6 2 x 107 (M)

~1 trillion Z bosons!
(20x more than in 3000 fb"' LHC14 data)

* 50-70% of ATLAS computing resources (billions of CPU hours/year) spent on
simulation [1] — dominated by particle showers in calorimeters

« (Can use GANSs to quickly generate large ensembles of calorimeter showers

« Alternative: “frozen shower” approach [2] [1] CERN-RRB-2015-014
[2] ATLAS Fast Shower Simulation
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https://cds.cern.ch/record/2002240
https://iopscience.iop.org/article/10.1088/1742-6596/119/3/032008

I

Tracking with ML

going from hits... to tracks... is computationally expensive:

'E‘100:""|""I""I""I""I""I""I""I"" ‘E
= E Reconstruction of 2017 pp data, (s = 13 TeV " 3
= 90E-  in Athena release 21.0.37 tuned for (1) = 30 8
o) F on Intel” Xeon™ CPU E5-2630 v3 X
q>) 80 low- reference runs 10862 luminosity blocks 8
D F [ high-y run 335302 463 luminosity blocks E: 102 e}
g 705_ ComputingandSoftwarePublicResults ;- %‘
3 60F i e
2 £
~ 50:— =

40F 10

30F-

20F-

10;— " ATLAS Preliminary 1

S I TN DTS I P B B B
qO 20 30 40 50 60 70 80 90 100

(w)

« Major challenge for HL-LHC
and future hadron colliders!

Images from J.R. Vlimant, CEPC Oxford Workshop
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https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults
https://indico.cern.ch/event/783429/timetable/?print=1&view=standard

I Tracking with ML

going from hits... to tracks... is computationally expensive:

'ﬁ‘100:""I""I""I""l""I""I""I""l"" <
: = Reconstruction of 2017 pp data, s =13 TeV " 8
c 90 :_ in Athena release 21.0.37 tuned for (1) = 30 s
o) F on Intel” Xeon” CPU E5-2630 v3 X
q>) 80 low- reference runs 10862 luminosity blocks 8
B E B high-j1 run 335302 463 luminosity blocks E: 102 o)
g 705_ ComputingandSoftwarePublicResults ;- %‘
T 60 # g
: £
~ 50:— =

40 10

30F-

20F-

10;— " ATLAS Preliminary 1

P I TP TP PP I BT P B
qO 20 30 40 50 60 70 80 90 100

(w)

« Major challenge for HL-LHC
and future hadron colliders!

| Facebook Al Research (FAIR)
http s://grxiv.orq/pdf/1 604.02135.pdf

« Can leverage unsupervised
learning techniques to group
hits into tracks

eeeeeeeeee

« Subject of TrackML challenge

Images from J.R. Vlimant, CEPC Oxford Workshop
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https://arxiv.org/pdf/1604.02135.pdf
https://indico.cern.ch/event/783429/timetable/?print=1&view=standard
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults
https://sites.google.com/site/trackmlparticle/

Jet Classification at LHC [1]

++ = mass from QCD radiation

R S top tagger performance:
~ 70% . _E\ . —— ParticleNet
) & TreeNiN |
° 104 Q\'ﬁ Qf‘g —:= ResNeXt deep
: R o PFN , i
Hooee < P 125Gev N i learning
= 60% it A \{*\.\ === NSub(8)
- e NN LBN
e \t‘ h) Ry NSub(6)
H - A o) P-C
W/IZ ~~<5: | 8091 GeV £ 100N (ota
~ 70% § v NN —.- EFN
fas” ; \:.:\.,‘ N nsub+m
g MR EFP
2 == TopoDNN
b 42 GeV++ g $
810

100 MeV++

C % 1.3 GeV++ t g q/g RN
," VS. \‘\\
% 10!

00 01 02 03 04 05 06 07 08 09 10

Signal efficiency &5
g % 0++

(1] from slides by Jessie Thaler * Deep learning approach often provides best

see also recent reviews: performance for jet CIaSSification taSkS

Larkoski, Moult, Nachman, 1709.04464,
Marzani, Soyez, Spannowsky, 1901.10342
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https://indico.cern.ch/event/813845/contributions/3394465/attachments/1890829/3118217/jthaler_USATLAS_UMass_ML.pdf
https://arxiv.org/abs/1709.04464
https://arxiv.org/abs/1901.10342

Jet Classification at LHC [1]

++ = mass from QCD radiation

173 GeV++

~ 70% A X 3
D 10*
H - < P 125GeV
~ 60% “._":.
W/Z N< i 8091 GeV
~ 70%
b % 42 GeV++

8 top tagger performance:

- ParticleNet

TreeNiN deep

- ResNeXt
PFN ]
i learning

= NSub(8)

LBN

NSub(6)

P-CNN

LoLa

= EFN

nsub+m

EFP

- TopoDNN

10°%4

Background rejection X

102

C % 1.3 GeV{ “The FCN with one subset consisting of fourteen observables shows nearly no degradation of
performance. This indicates that these fourteen expert-designed observables could have
% captured the most necessary information for separating quark and gluon jets.”
u,d,s 100 MeV
- Luo, Wang, Xu, Zhu, quark/gluon discrimination with FCNs,
g % 0++ Science China Phys., Mech. Astron. (2019) 62:991011
. . - D learnin roach often provi
[1] from slides by Jessie Thaler eep lea g al:_)p oac O te ) pro des best
see also recent reviews: perfOrmanCG fOr Jet ClaSSIflcatlon taSkS
Larkoski, Moult, Nachman, 1709.04464, « But not always... possible to design clever features!

Marzani, Soyez, Spannowsky, 1901.10342
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https://indico.cern.ch/event/813845/contributions/3394465/attachments/1890829/3118217/jthaler_USATLAS_UMass_ML.pdf
https://arxiv.org/abs/1709.04464
https://arxiv.org/abs/1901.10342
https://link.springer.com/article/10.1007%2Fs11433-019-9390-8

Jets at Future Hadron Colliders

Large Lorentz boost — highly collimated

High p+ jets radiate W
bosons at large rates [1]

0.4

0.3

0.2

0.1

I

0.0

I

L a(jj+nW)/a(jj+(n—1)W)
__with max[pg(jet)] > Prmin

I

o(jiw)/o(jj) -

oW W) /o (GiW) 1

10

15

PT min (TeV)

20

» top decays become as collimated as b
decays at LHC — top quarks vs. top jets [3]

1/N dN/dm . [TeV]

W/ Z bosons — calo granularity is crucial [2]

0.2

03

1
01 02 03
Ae

1

E Z—qq jet MGgrs= 5TeV ! '

-

0.2
0.1

0 |3

0.1

0.2

03k

sk Z—>qq jet mgrs =30 TeV

| Il 1 L
03 02 -01 0 01 02 03
A

1.6

1.4

120k

1F

08 |

0.6

0.4

02 |

0

tag two hadr. tops (HEPTopTagger), reconstruct "tt" mass

T T
s 7' = sum of two HTT tops
[F = Z' =sum of two raw jets (2 HT|JT tags)

| Z' from two top jets

5 Z’ from two
on-shell tops

e h
0 5 10 15
reconstructed my. [TeV]

20

tag on-shell top

). quark decay

9

k<

o

o

8 \J|z - off-shell
(] top quark

“Boosted techniques will be essential
at 100 TeV [hadron collider]” [3]

Good use case for deep learning

[1] Arkani-Hamed, Mangano, Han, Wang, “Physics Opportunities at a 100 TeV pp collider”, Physics Reports 652 (2016) 1-49
[2] Mangano et al., “Physics at a 100 TeV pp collider: SM processes”, 1607.01831
[3] Salam, "Principles of Multi-TeV boosted objects”, Higgs & BSM at 100 TeV workshop
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https://www.sciencedirect.com/science/article/abs/pii/S0370157316301855?via%3Dihub
https://arxiv.org/abs/1607.01831
https://indico.cern.ch/event/352868/

Particle ID at Future ete- Collider

« Electrons and muons are crucial for precision Z—¥¢ electroweak
measurements and leptonic Higgs decays

« LICH algo [1] calculates e and u likelihoods
, L, using 24 features combined into BDT

— _I s T s o o s I_
— dE/dx, # ECAL / HCAL hits, spatial shower shape OF e i
info, energy distribution, fractal dimension [2] ol % xR —

— Similar approach for b-tagging with LCFIPIus [3]

-10}

~12}

_14f - Muon - cEpc CDR Vol i

P R

14 12 -10 -8 6 -4 =2 0
log1o(L,)

[1] Yu, Ruan, Boudry, Videau, EPJC 77 (2017) no. 9
[2] Ruan, Jeans, Boudry, Brient, Videau, PRL 112(1), 012001, 2014
[3] Suehara, Tanabe, NIM A 808 (2016) 109, and see talk from Wei-Ming Yao
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http://cepc.ihep.ac.cn/CEPC_CDR_Vol2_Physics-Detector.pdf
http://dx.doi.org/10.1140/epjc/s10052-017-5146-5
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.012001
https://www.sciencedirect.com/science/article/pii/S0168900215014199?via%3Dihub
https://indico.cern.ch/event/820586/contributions/3551243/attachments/1908931/3154693/cepc_tracking_chicago2019.pdf

Particle ID at Future ete- Collider

« Electrons and muons are crucial for precision Z—¥¢ electroweak
measurements and leptonic Higgs decays

« LICH algo [1] calculates e and u likelihoods

, L, using 24 features combined into BDT

— dE/dx, # ECAL / HCAL hits, spatial shower shape
info, energy distribution, fractal dimension [2]

— Similar approach for b-tagging with LCFIPIus [3]

ROC curve for e vs. 1 classifier
with high granularity 3D calorimeter:

1.005
>
(&)
c
EI
© M%Trimprovement
=
(¢))
© 0.995 -
c
>
7))
@ 0.990
GooglLeNet
0.985 - Convolutional NN
Boosted Decision Tree
0.980 T T T
1074 10°3 1072 107! 100

e background efficiency

——

CEPC CDR Vol. 1l

~14f
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<«——— Calorimetry with Deep Learning: Particle Identification and

Simulation for Collider Physics

Dawit Belayneh®, Federico ('jll'lllillilli:. Amir Farbin®, Benjamin Hooberman®, Gulrukh Khattak®®, Miaoyuan Liu®,
Junze Liu®, Dominick Olivito”, Vitéria Barin Pacela®, Maurizio Pierini?, Alexander Schwing®, Maria Spiropulu’, Sofia

Vallecorsa®, Jean-Roch Vlimant?, Wei Wei?, and Matt Zhang**
to appear soon

see also: de Oliveira, Nachman, Paganini, EM
showers beyond shower shapes, 1806.05667
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http://cepc.ihep.ac.cn/CEPC_CDR_Vol2_Physics-Detector.pdf
https://arxiv.org/abs/1806.05667

o(yy) vs. y discrimination at Future ete- Collider

« 19yy) reconstruction crucial for T and heavy flavor physics

— Optimize calorimeter granularity by determining efficiency to reconstruct both photons from
0 — yy decay vs. distance between y calorimeter impact points, for different cell sizes

Efficiency

CEPC CDR

04

& 1mm x Tmm
~A- 5mm x 5mm
—=— 10mm x 10mm |

02

0 10 20 30 40 50
Distance [mm]
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J§l ~°(vv) vs. v discrimination at Future e*e- Collider

« 19yy) reconstruction crucial for T and heavy flavor physics

— Optimize calorimeter granularity by determining efficiency to reconstruct both photons from
0 — yy decay vs. distance between y calorimeter impact points, for different cell sizes

)

good use case for CNN imaging!

[
2
)
*..J ® y Calorimetry with Deep Learning: Particle Identification and
o Simulation for Collider Physics

0 A | P T
T WE ang S 3 Junse Lt Domnick Oliito” Vitcrin Darin Pacels. Muutio Peting?. Aloxarder Selwing?. Matia Spiropud? Sofis
" .‘b. .. )/ Vallecorsa?, Jean-Roch Vlimant®, Wei Wei?, and Matt Zhang!
. 2 e ?, to appear soon
- B @
ROC curve for y vs. m’—yy classifier
> 1 LML I with high granularity CLIC LDC calorimeter:
& CEPC CDR Vol. Il 1
L2 I 1 > 1.0
TR N e
: Q0
H O 087
08 e =
- i ; = 0.6 1
o6 | . o
. 2 -
? CEPC CDR N 04 Qv+
04 | | . &~ e GoogLeNet
i ~-&-1mm x 1mm | Pid .
ot BmxEmm ] o e Convolutional NN
0.2l —=— 10mm x 10mm | . ,/ o
i ol Boosted Decision Tree
- J 0.0 1 , i . .
0 r; A ) L . n I’ 0.0 0.2 0.4 0.6 0.8 1.0
0 10 20 30 40 50 m—yy background efficiency

Distance [mm]
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Performance Requirements

Future et*e” collider performance requirements [1]

Physics Detector Performance
Measurands
process subsystem requirement
ZH,Z — ete ,utu~ ,o(ZH Al =
N e ih mu, o ! )7 Tracker ,,,,(, /pr) =
H— pp BR(H — prp™) 2><1()‘%m
H — bb/cc/gg BR(H — bb/ci/qg) Vertex Ire =
58 10— —(um)
p(GeV)xsin3/2 6
o I ECAL A =
H — qq, WW*, ZZ* BR(H — qq, WW*, ZZ*)
HCAL 3 ~ 4% at 100 GeV
AE/E =
H — vy BR(H — v7) ECAL 0.20 / :
= 4 0.01
E(GeV)

[1] CEPC CDR Vol. II
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Possible Performance Enhancements with Deep Learning

I

Future et*e” collider performance requirements [1]

Physics M d Detector Performance
process casuranas subsystem requirement
ZH,Z j i*ef.y*,u* mp, 0(25)7 Tracker ﬁ(l/pr) 0:_001
H— pp BR(H — prp™) 2 x 10 D JGov)smi77 8 L
H — bb/cc/gg BR(H — bb/cc/gg) Vertex ) UIZ - o ’ b/C-tagglng RNN [2’3] .
58 seevxemze(Mm) | e quark / gluon discrimination RNN / CNN [4-6]
I . ECAL A E = i . . .
H—qq, WW*, 22" BR(H —qq, WW*, 22%) 3 4% at 100 GeV jet energy regression with NNs [4,7]
oo BR(H -5 77) ECAL AE/E = —_ * yvs. n9(yy) discrimination with CNNs [8]

020 1 (.01
E(GeV)

[1] CEPC CDR Vol. Il

[2] ATLAS, b-tagging with RNNs, ATL-PHYS-PUB-2017-003

[8] CMS, Heavy flavor identification with DNNs, CMS-DP-2017-005
[4] Larkoski, Moult, Nachman, 1709.04464 and references therein
[5] ATLAS, g/g tagging with jet images, ATL-PHYS-PUB-2017-017
[6] Cheng, RNNs for Quark/Gluon Tagging, CSBS (2018) 2:3

[7]1 ATLAS, NN approach to jet calibration, ATL-PHYS-PUB-2018-013
[8] BH et al., Calorimetry with Deep Learning, NeurlPS2017

E,, 46, regression for improved M, resolution [8]
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http://cepc.ihep.ac.cn/CEPC_CDR_Vol2_Physics-Detector.pdf
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2017-003/
http://cds.cern.ch/record/2255736
https://arxiv.org/abs/1709.04464
https://cds.cern.ch/record/2275641?ln=en
https://link.springer.com/article/10.1007%2Fs41781-018-0007-y
http://cdsweb.cern.ch/record/2630972
https://dl4physicalsciences.github.io/files/nips_dlps_2017_15.pdf

Training with Data: Weak Supervised Learning

I

« Challenge: we can’t rely on MC to model low-level inputs perfectly

« Train on data using weakly-supervised learning with signal-enriched and
background-enriched data samples

* Rely on MC only for signal and background fractions of the two samples (and vary
this fraction to estimate systematic uncertainty)

1.0

Mixed Sample 1 Mixed Sample 2

4 ' { A

OO®e® | | @GOG 03 i

OCOB® | [ ®O®G®O o

OCO®O® | [ OCO®G® 06 .

OCCOG | | ®C®O® =

@GOG | [ OC®G® & 0.4 i
\ / \ J

é —— Weakly supervised NN, AUC=0.89

o
(S

) / ,"// —— Fully supervised NN, AUC=0.89
fl fZ ol - -~ Feature 1, auc=0.78 ]
:" - - - Feature 2, auc=0.71

- - - Feature 3, auc=0.78

Classifier 0.([) ' | ‘ ‘ ‘
).0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Dery, Nachman, Rubbo, Schwartzman, “Weakly Supervised
Classification in High Energy Physics”, JHEP 05 (2017) 145
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(One) Strategy for ML Event Classification

object classification
& regression event categorization

FATLA 11—
http://atlas.ch ce

cell 2

. :: NN _b(e: ET,e, 96, d)e)
cellN = \

cell 1 =

PN | —> Prob(SUSY)
t, Et;, 0, ¢
. NN (et Eq, 6), ¢) —> NN —» Prob(SM)
cellN =—»
cell 1 =» /
1271 NN} (MET, Er, 0, ¢.)
cellN =

« Factorize the problem: object tagging + event classification
— Use cells to classify type and measure p4’s of physics objects (e, u, 1, y, j, MET)
— Use object types and p4’s to categorize events (e.g. SM vs. SUSY) with e.g. RNNs
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Classifying Events with BDTs

« Feature-based BDT event classifiers in wide use by ATLAS & CMS
« Be wary of “tails” — also perform cut-based analysis, and compare results

CMS Run 1 stop 1L search, BDT vs. cut-based approach:
EPJC 73(12):2677, 2013 oM e=eTevjiw-tasw ]
E 300 E— . 1.:!:8 0.7 0.9 0.9 0.9 0.8 0.8 0.8 ::: :E 18 g
CMS Is=8TeV, [Ldt=19.5fb" = ol sl 1 g 53
o 2 3 F  — BDTexpected 3 ©
s 150 . N E F - T
§ O.gf _+_ - E m% 1.2 %bf)l
150 [— 0.7-67] 1
O VTTTT{TTTT{TTTT{TTTT{TTTT[TTTT[TTTT[TTTT[TTTT[TTTTA : D‘Bo-;
~ 30 T-°BDT4 —e— Data ] u 4 —0.8
S E 1 I:I 1lt0p E 100; os-07, 0.6
8 ogl I N h - 707 '
Q2 25
= preseasfeasanes : I:I W-ets 1 50— Rl 0.4
0 C i I rare ] - B 0.2
04+ L SM +T— t;z:’ (650/50) - U G : i)
L : ] 0 100 20 300 400 500 700
150 : m. [GeV]
10F =

8.2 0.3 0.4 0.5 0.6 0.7
BDT Output
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https://link.springer.com/article/10.1140%2Fepjc%2Fs10052-013-2677-2

Alternative Methods for Event Classification

1. Deep learning approach: feed low-level data
(e.g. particle flow object p4’s) directly to DNN

2. Transform low-level data to “rapidity-mass
matrices” and train shallow NNs [1,2]

3. Matrix Element Likelihood Analysis (MELA)

» Interesting option for future e*e- colliders (with excellent
detector resolution)

[1] Chekanov, “Imaging particle collision data for event classification using machine learning”, NIM A 931 (2019) 92
[2] Chekanov, “Machine learning using rapidity-mass matrices for event classification problems in HEP”, 1810.06669
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https://www.sciencedirect.com/science/article/pii/S0168900219304796?via%3Dihub
https://arxiv.org/abs/1810.06669

Summary

» Wide variety of machine learning techniques available for
collider classification, regression, and fast simulation tasks

« Feature-based classifiers widely used in ATLAS and CMS and
under study for future colliders

* Deep learning approach with low-level inputs has been shown
to provide better performance for some problems
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Additional Material
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B-tagging with ML

TMVA overtraining check for classifier: BDTG

*PID can help to improve jet-charge tagger B S aio ™ 7 Wl e o
using identified charged K inside the jet. é‘f: PRSPS SRS S————"

*Leading K provides a tag for parent quark: i :
06— z
—-b—c—os-K : :
04 - f’.
—bbar—cbar—sbar—K* 02} :
5 ¢
0 =
*Compared BDT and improving ¢ from b-jet AR B Y ome neponss
separation by 10% using additional kaon. $ — Ctag>0.2
k-1 R - -
2 | ar—— e N ) J W
8 —88 | & | Bbar —es :
" cc | ¥ Cbar ~ ¢ E
10%} | 10%| E
. 9 01 02 03 04 05 06 07 08 09
' [ Eff
L L
-2 -1 0 1 2 -2 -1 0 1 2
qKaonch qgbarKaonch 2 1

Slide from Wei-Ming Yao
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https://indico.cern.ch/event/820586/contributions/3551243/attachments/1908931/3154693/cepc_tracking_chicago2019.pdf

l{ Looking Inside the Black Box

Correlation of Deep Network output with pixel activations.
pr €[250,300] matched to QCD, my, <[65.95] GeV

1.0¢

1 ( T T c .

0.60 024
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_10b . - ) | 0 5 10 15 20 25 30 35
10 -05 0.0 0.5 10

.
[Transformed] Pseudorapidity (r @ pra Is

e Low-level correlations: Correlations between the network inputs and
outputs can show which areas of the input space are most useful for dis-
crimination. For a jet image .J, this results in another image C' where the
pixel intensity is the correlation between the network output N and the
pixel intensity, C;; = p(J;j, N(J)). This only identifies linear information
about the network output but can illustrate how this is distributed non-
linearly in space. Examples are shown in Fig. 33 for W and top tagging.

Extensions to non-linear generalizations of the correlation coefficient are

also possible. Larkoski, Moult, Nachman, 1709.04464,
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https://arxiv.org/abs/1709.04464

l{ Looking Inside the Black Box

e High-level correlations: The joint distribution of standard physically-
inspired features (e.g. jet mass) and the network output (or intermediate
node activations) illustrate if and how the network is learning about known

physical effects.

e High-level input: Building a new classifier that combines the network
output and a standard physically-inspired feature can demonstrate to what

extent the information about that feature is learned by the network.

e Redacted phase space: Studying the distribution of inputs and the
network performance after conditioning on standard physically-inspired
features can help to visualize what new information the network is using
from the jet. Training the network on inputs that have been conditioned

on specific values of known features can also be useful for this purpose.

¢ Re-weighted phase space: A complementary approach to redacting is

to re-weight phase space so that the marginal likelihood ratio for stan-
dard physically-inspired features is unity, ps(m)/ps(m) = 1, where m is
a feature of the full image J and p,(m) = [ psp(J)0(m(J) = m) is the
marginal probability distribution. With this weighting, the known feature

m is not useful for classification. Reference [572] named this ‘planning’.

Weights: The activations for the various layers can sometimes be useful
in identifying what the network is learning. This is particularly true for
convolutional layers where the filters encode activated features. An inter-
esting further step is to convolve the filters with the average image from

the two classes and then visualize their difference.

Most activating images: A complementary approach to visualizing the
network weights is to find which sets of inputs most activate a particular
node or the entire network. In the case of jet images, one can plot the

average of the n most activating images.

Larkoski, Moult, Nachman, 1709.04464,
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Systematic Uncertainties

[Barnard, Dawe, Dolan, Rajcic, 1609.00607]

PYTHIA (VINCIA) - PYTHIA plg Sherpa - PYTHIA ml% PY jet images (Or SequenceS) depend
) on the generator — 3 approaches
— Build in dependence on nuisance
L parameters to network

[Baldi, Cranmer, Faucett, Sadowski, Whiteson, 1601.07913]

— Minimize network dependence on

nuisance parameters
[Louppe, Kagan, Cranmer, 1611.01046]

— Train with data using weak
supervised learning

Herwig (angular) - PYTHIA I Herwig (dipole) - PYTHIA I
4

Normalized Intensity Difference
Normalized Intensity Difference
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Data Representations

Larkoski, Moult, Nachman, 1709.04464,
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][ Data Representations: Fixed- vs. Variable-Length

— Inputs are individual
pixel/cell energies

— Use computer vision

Inputs are tracks, clusters,
or PF candidates

Use language processing

- Images « Sequences /trees « Graphs
— Fixed length — Variable length — Variable length
representation representation representation

Inputs are tracks, clusters,
or PF candidates

Use Message-Passing

techniques (CNN/DNN) (RNN/LSTM/GRU) Neural Networks (MPNN)
250 < pT/GeV <260 GeV, 65 < mass/GeV <95
Pythia 8, QCD dijets, Vs =13 TeV ..o .

§ 10° = o 1.0

o 102 O,

< 10 2

3 g 0.8

£ K

£ 10"

< —

= 102 06

g 10* 3

- 10° 0.4

10°®
107 0.2
10°®

-1 -0.5 0 0.5 1
[Translated] Pseudorapidity (v)

QCD-Aware RNNs for Jet Physics, 1702.00748 Neural Message Passing for Jet Physics, NIPS DLPS 107

Jet-Images — Deep Learning Edition, 1511.05190
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Data Representations: Fixed- vs. Variable-Length

- Images « Sequences /trees « Graphs
— Fixed length — Variable length — Variable length
representation representation representation
— Inputs are individual — Inputs are tracks, clusters, — Inputs are tracks, clusters,
pixel/cell energies or PF candidates or PF candidates
— Use computer vision — Use language processing — Use Message-Passing
techniques (CNN/DNN) (RNN/LSTM/GRU) Neural Networks (MPNN)

250 < pT/GeV <260 GeV, 65 < mass/GeV <95

- Pythia 8, QCD dijets, ¥s =13 TeV 0 < .'.. - 10
2 102 © 2
< 10 2 .
= $ ) 0.8
'% 0.5 'e :
5 10" :
i 2 . 150 =
8 10 0.6 E:
5 o0 10° : 7
8 10 o 100 g
= 10° ' 04
-0.5
10°
107 0 0.2
-1 10°®
rE O W | 10-9
- 05 0 05 1 ° 0 50 100 150 200
[Translated] Pseudorapidity (v)
Easy to visualize Captures all constituents with full granularity Captures all constituents with full granularity
Benefit from image processing literature Can handle sparse images and non-uniform Can learn jet clustering algo (adjacency matrix)
Exploits full info (including distance btw pixels)  cell sizes Can be non-local
Images are sparse and w/o clear edges Exploits calo. reconstruction (cells—clusters)  Non-trivial to visualize
Preprocessing is non-trivial No unique order / structure
Non-trivial convolutional filters for non-uniform  Each node is connected only to neighbor
cell sizes
Jet-Images — Deep Learning Edition, 1511.05190 QCD-Aware RNNs for Jet Physics, 1702.00748 Neural Message Passing for Jet Physics, NIPS DLPS 107
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Data Representations: Variable-Length Representations

order-independent variable-length representations!

Energy Flow Networks: Deep Sets for Particle Jets
Patrick T. Komiske, Eric M. Metodiev, Jesse Thaler aI‘XIVZ1 81 0051 65 [hep-ph]

(Submitted on 11 Oct 2018 (v1), last revised 11 Jan 2019 (this version, v2))

ariable length
epresentation

puts are tracks, clusters,
)r PF candidates

se Message-Passing
eural Networks (MPNN)

A key question for machine learning approaches in particle physics is how to best represent and learn from collider events. As an event is intrinsically a variable-length
unordered set of particles, we build upon recent machine learning efforts to learn directly from sets of features or "point clouds". Adapting and specializing the "Deep
Sets" framework to particle physics, we introduce Energy Flow Networks, which respect infrared and collinear safety by construction. We also develop Particle Flow
Networks, which allow for general energy dependence and the inclusion of additional particle-level information such as charge and flavor. These networks feature a
per-particle internal (latent) representation, and summing over all particles yields an overall event-level latent representation. We show how this latent space
decomposition unifies existing event representations based on detector images and radiation moments. To demonstrate the power and simplicity of this set-based
approach, we apply these networks to the collider task of discriminating quark jets from gluon jets, finding similar or improved performance compared to existing
methods. We also show how the learned event representation can be directly visualized, providing insight into the inner workings of the model. These architectures
lend themselves to efficiently processing and analyzing events for a wide variety of tasks at the Large Hadron Collider. Implementations and examples of our
architectures are available online in our EnergyFlow package.

Dynamic Graph CNN for Learning on Point Clouds
Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, Justin M. Solomon arX|V1 801 07829 [CSCV]

(Submitted on 24 Jan 2018)

Point clouds provide a flexible and scalable geometric representation suitable for countless applications in computer graphics; they also comprise the raw output of
most 3D data acquisition devices. Hence, the design of intelligent computational models that act directly on point clouds is critical, especially when efficiency
considerations or noise preclude the possibility of expensive denoising and meshing procedures. While hand-designed features on point clouds have long been
proposed in graphics and vision, however, the recent overwhelming success of convolutional neural networks (CNNs) for image analysis suggests the value of adapting
insight from CNN to the point cloud world. To this end, we propose a new neural network module dubbed EdgeConv suitable for CNN-based high-level tasks on point
clouds including classification and segmentation. EdgeConv is differentiable and can be plugged into existing architectures. Compared to existing modules operating
largely in extrinsic space or treating each point independently, EdgeConv has several appealing properties: It incorporates local neighborhood information; it can be
stacked or recurrently applied to learn global shape properties; and in multi-layer systems affinity in feature space captures semantic characteristics over potentially
long distances in the original embedding. Beyond proposing this module, we provide extensive evaluation and analysis revealing that EdgeConv captures and exploits
fine-grained geometric properties of point clouds. The proposed approach achieves state-of-the-art performance on standard benchmarks including ModelNet40 and
S3DIS.

exp(—dj/do)

0 100 150

Easy to visualize Captures all constituents with full granularity Captures all constituents with full granularity
Benefit from image processing literature Can handle sparse images and non-uniform Can learn jet clustering algo (adjacency matrix)
Exploits full info (including distance btw pixels) | cell sizes Can be non-local
Images are sparse and w/o clear edges Exploits calo. reconstruction (cells—clusters)  Non-trivial to visualize
Preprocessing is non-trivial No unique order / structure
Non-trivial convolutional filters for non-uniform  Each node is connected only to neighbor
cell sizes
Jet-Images — Deep Learning Edition, 1511.05190 QCD-Aware RNNs for Jet Physics, 1702.00748 Neural Message Passing for Jet Physics, NIPS DLPS 107
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https://arxiv.org/abs/1801.07829

Data Representations: Variable-Length Representations

order-independent variable-length representations! phs
Energy Flow Networks: Deep Sets for Particle Jets fariable length
Patrick T. Komiske, Eric M. Metodiev, Jesse Thaler arXiV:1 81 0051 65 [hep'ph] epresentation

(Submitted on 11 Oct 2018 (v1), last revised 11 Jan 2019 (this version, v2))

. . . o - A o , hputs are tracks, clusters,
A key question for machine learning approaches in particle physics is how to best represent and learn from collider events. As an event is intrinsically a variable-length .
unordered set of particles, we build upon recent machine learning efforts to learn directly from sets of features or "point clouds". Adapting and specializing the "Deep ) PF Cand|dates
Sets" framework to particle physics, we introduce Energy Flow Networks, which respect infrared and collinear safety by construction. We also develop Particle Flow
Networks, which allow for general energy dependence and the inclusion of additional particle-level information such as charge and flavor. These networks feature a Jse Message_Passi ng
per-particle internal (latent) representation, and summing over all particles yields an overall event-level latent representation. We show how this latent space
decomposition unifies existing event representations based on detector images and radiation moments. To demonstrate the power and simplicity of this set-based Jeu ral Networks (M PNN)
approach, we apply these networks to the collider task of discriminating quark jets from gluon jets, finding similar or improved performance compared to existing
methods. We also show how the learned event representation can be directly visualized, providing insight into the inner workings of the model. These architectures
lend themselves to efficiently processing and analyzing events for a wide variety of tasks at the Large Hadron Collider. Implementations and examples of our
architectures are available online in our EnergyFlow package.

10 1.0
»  Code with simple examples at 08
https://energyflow.network/
; : 0.6 EZ
- g/gtagging “out-of-the-box” from ‘. i
Anil at UIUC > 04
- ’fi?ﬁ‘.:?.im X 0.2
0 50 100 150 200
Easy to visualize Captures all constituents with full granularity Captures all constituents with full granularity
Benefit from image processing literature Can handle sparse images and non-uniform Can learn jet clustering algo (adjacency matrix)
Exploits full info (including distance btw pixels) | cell sizes Can be non-local
Images are sparse and w/o clear edges Exploits calo. reconstruction (cells—clusters)  Non-trivial to visualize
Preprocessing is non-trivial No unique order / structure
Non-trivial convolutional filters for non-uniform  Each node is connected only to neighbor
cell sizes
Jet-Images — Deep Learning Edition, 1511.05190 QCD-Aware RNNs for Jet Physics, 1702.00748 Neural Message Passing for Jet Physics, NIPS DLPS 107
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g / g Discrimination in ATLAS
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1st ATLAS result on ML imaging!

CNN trained on EM towers + tracks
outperforms classifiers based on
# charged particles and jet width

Gluon Jet Rejection
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ML Imaging for Particle ID

Example 60 GeV
photon shower

Energy in calorimeter
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Q: can you name these celebrities?
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A: they don’t exist! Images generated by GANs

NVIDIA, “Progressive Growing of GANs for Improved Quality, Stability, and Variation,” ICLR 2018
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https://research.nvidia.com/sites/default/files/pubs/2017-10_Progressive-Growing-of/karras2018iclr-paper.pdf

Calorimetry with Machine Learning

single particle showers in high-granularity 3D calorimeter

electromagnetic shower hadronic shower

« Classification, regression, and fast simulation of single
particles (e, 7*, y, %) with high-granularity calorimeter

 Full Geant-based simulation of CLIC LCD detector

Investigate improvements from cell-based DNNs and
CNNs w.r.t. feature-based DNNs and BDTs

Large Collider Detector (LCD)
for proposed CLIC machine

Calorimetry with Deep Learning: Particle Classification, Energy Regression, and Simulation for High-Energy Physics [pdf] Ca | orimet ry Wlth Deep Learni ng: Pa rtiCIe |dentificati0n an d
Benjamin Hooberman, Amir Farbin, Gulrukh Khattak, Vitdria Pacela, Maurizio Pierini, Jean-Roch Vlimant, Maria Spiropulu, Wei Wei, S| mu |ati0n for Col |ider Physics

Matt Zhang and Sofia Vallecorsa
Dawit Belayneh!, Federico Carminati?, Amir Farbin®, Benjamin Hooberman?, Gulrukh Khattak?®, Miaoyuan Liu®,
Junze Liu?, Dominick Olivito”, Vitoria Barin Pacela®, Maurizio Pierini?, Alexander Schwing®, Maria Spiropulu®, Sofia

Proceedings of the Deep Learning for Physical Sciences Workshop Vallecorsa?, Jean-Roch Viimant, Wei Weit, and Matt Zhang™
at Neural Information and Processing Systems (NeurlPS17) to appear soon
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I

Classification Results

« Train classifiers for y vs. n%(= yy) and e vs. t*

Apply filters to select hadrons that mimic signal: for n° require 6(y,y)<0.1, for m* require H/E < 1/40

« Similar performance from DNN trained on features vs. BDT trained on features

- Significant improvement in performance from DNN trained on cells

ROC curve for y vs. n° classifier

ROC curve for e vs. t* classifier

>
% 1.01 — g 1.0 —
'S 0.8 ‘5 0.9 caveats:
% ' % « single particle
= 0.6 = 08 showers at normal
5 p; = 60 GeV g, pr = 60 GeV incidence only
i 0.41 f 07 « no noise or PU
0.2 — DNN (cells) — DNN (cells) ’ highly--granu'ar C-aIo
. DNN (features) 0.61 DNN (features) with uniform cell cizes
0.0 —— BDT 0.5 —— BDT
00 02 04 06 08 1.0 0.0 0.1 02 03 04 05
n° background efficiency m* background efficiency
v vs. Y evVs. T
Model acc. AUC A€y ARpke acc. AUC A€y ARpkg
BDT 83.1% 89.8% - - 93.8% 98.0% - -
DNN (features) | 82.8% 90.2% 0.9% 0.95 93.6% 98.0% -0.1% 0.95
DNN (cells) 872% 93.5% 9.4% 1.63 94% 999% 4.9% 151
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Regression Results

« Significant improvements in energy resolution w.r.t. linear discriminant
based on total ECAL and HCAL energies

Energy resolution Simple Linear Model
)+ Linear fit: Photons Particle Type a b c
Linear fit: Electrons
--(4- Linear fit: Neutral Pions Photons 55.5 1.85 1245
Linear fit: Charged Pions Electrons 42.3 1.51 1037
) CNN: Photons Neutral pions  55.3 1.71 1222
1073 N e e Charged pions 442 25 11706
. CNN: Charged Pions CNN Model
S . Particle Type a b c
< Photons 183 0.75 131
mE S Electrons 18.7 0574 111
< U:I§ 1 .7 Neutral pions  19.3 045 231
oI 1071 Charged pions 114  1.02 893
o (AE) _ a C
Ewe — VFEyue D b D Eirue
caveats:
100 4 . .
] . . . . « single particle
0 100 200 300 400 500 showers at normal
True Energy (GeV) incidence only
* no noise or PU
« highly-granular calo
with uniform cell cizes
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i Feature Modeling with GANs
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Paganini, de Oliveira, Nachman, CaloGAN for
3D particle showers, PRD 97, 014021 (2018)

| : | ' comparing features to Geant
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.97.014021

More on Particle ID

« Study e vs. y and e vs. rt* classification using Geant4 model inspired by
ATLAS calorimeter

« Compare performance for various network architectures for combining
info from 3 LAR layers with different granularities

« Densely-connected NN provides best performance

4.0 4500
—— 3-Stream DenseNet —— 3-Stream DenseNet
3-Stream CNN 4000 3-Stream CNN
3.5 —— 3-Stream LCN —— 3-Stream LCN
—— FCN on Shower Shapes 3500 —— FCN on Shower Shapes
3.0 —— FCN on Unraveled Pixels 3000 —— FCN on Unraveled Pixels
@2 . :2500
— 2000
2.0 1500
1000
1.5
500
185 06 07 08 09 1.0 P96 097 008 009  1.00
Eo+ Eo+

Survey of Machine Learning Techniques for High Energy Electromagnetic
Shower Classification, DLPS NIPS 2017 proceedings,
Michela Paganini, Luke de Oliveira and Benjamin Nachman
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Software & Computational Challenges

« Lots of available ML frameworks: TensorFlow/Keras (C++), PyTorch (python), etc.

« Training often performed with private python-based Keras+TensorFlow
— few processes, single threads, little memory constraints, expendable jobs

* Production performed in custom C++ framework with ROOT-based I/0
— many processes / threads, memory constraints, processes can’t die

« Deploying ML approaches at full scale with efficient multi-threading and memory
usage is a key challenge

 MXNet: a flexible & scalable library for ML https://mxnet.apache.org/

— Acceleration libraries to fully exploit GPU and cloud computing capabilities
» Device placement, multi-GPU training, automatic differentiation, optimized predefined layers

— Speed-up of ~2-3x observed (for DeepAKS8) [1]
— Need to tackle issues of thread safety

[1] see talk M. Verzetti, Fermilab ML for jets workshop, https://indico.cern.ch/event/745718/

Defining networks in format that is independent of ML framework is highly desirable
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Hyperparameter Optimization with HPCs

« Optimizing network architecture & hyperparameters is computationally expensive
— Different architectures (CNN, DNN, RNN, etc.), loss functions, gradient descent methods, etc.
— Tuning hyperparameters: number of layers, neurons per layer, learning & dropout rates, etc.

« Scan over permutations and compare performance metrics (AUC, accuracy, etc.)

« Highly parallelizable task — optimal for HPC / supercomputer!

— Good HEP use case for GPU-enabled machines
DNN hyperparameter scan

for y vs. M0 — vy classifier

Accuracy

 Blue Waters Supercomputer
at National Center for -

0.6542 0.6729 0.6849 0.6668

+/- +/- / il
0.0125 0.0058 0.0076

Supercomputing Applications = L | 0.705
- Largest Supercomputer ona ‘ 0.6809 } 0.33:17 0.13_67
university campus |||vl CXSEERY 0.0037 \ 0.0066
—  Cray XE/XK hybrid machine ‘;]ﬂ _Al g 0.690
with 2.3 GHz AMD 6276 ‘ 'm ) | 2.l T °hR RN
‘ st 7] 0.0068 0.0083 0.0045 0.0082
Interlagos processors and g B ‘ 3
| =
NVIDIA GK1 10 (K20X) Kep/er 0.6982 0.7055 0.7154 0.7064 0.675
accelerators | M 0005 0.0084 0.0053 0.0081
— 4228 GPU-enabled XK nodes
with 25 TB memory 0.6970 0.7031 0.7073 0.7100
0.3.6-61 o.t%.ss 0.3(4_70 o.&;—so 0.30115 0.660
128 256 5i2 10|24 20I48

Neurons per Hidden Layer
Calorimetry with Deep Learning: Particle Classification, Energy Regression, and Simulation for
High-Energy Physics, Belayneh, Farbin, BH, Khattak, Liu, Olivito, Pacela, Pierini, Schwing,
Spiropulu, Vallecorsa, Vlimant, Wei, Zhang, to appear soon
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An Affordable PC with a Powerful GPU

PC with GeForce 2080 Ti GPU for $2,000

https://pcpartpicker.com/user/anilr2/saved/HYPYTW

Component Selection Base Promo Shipping  Tax  Price Where

cpPu ' AMD Ryzen 7 2700X 3.7 GHz 8-Core Processor $238.63 FREE $238.63 ) OutletPC) m
Motherboard Gigabyte X470 AORUS ULTRA GAMING ATX AM4 Motherboard $135.99 $135.99 amazoncom m
Memory — Corsair Vengeance LPX 16 GB (2 x 8 GB) DDR4-3000 Memory $77.99 Prime $77.99 amazoncom m
Storage =m— Samsung 970 Pro 1 TB M.2-2280 NVME Solid State Drive $299.99 Prime $299.99 amazoncom m
Video Card “ Zotac GeForce RTX 2080 Ti 11 GB GAMING AMP Video Card $1169.99 $1169.99 amazoncom m
Case ‘ Fractal Design Focus G ATX Mid Tower Case $55.88 Prime $55.88 amazoncom m
gﬁ ° g\dg;:upemow\ G3 650 W 80+ Gold Certified Fully Modular ATX Power $121.88 -$2000" EREE $101.88 P Oetre] m

Base Total:  $2100.35

Mail-in Rebates:  -$20.00

Total: $2080.35
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ML Imaging for Object Classification & Regression

* Lots of possible applications:

e Jets

[~ Jet-Images: Computer Vision Inspired Techniques for Jet Tagging, JHEP 02 (2015) 118
Jet Images — Deep Learning Edition, JHEPO7 (2016) 069
Jet Substructure Classification in High-Energy Physics with Deep Neural Networks, PRD 93 (2016) 094034
Jet Constituents for Deep Neural Network Based Top Quark Tagging, arXiv:1704.02124
Parton Shower Uncertainties in Jet Substructure Analyses with DNNs, PRD 95, 014018 (2017)

— Jet substructure (W/top_tagg|ng)<_. How Much Information is in a Jet? JHEP 06, (2017) 073

— Quark vs. gluon discrimination
— bl/c-tagging
— Measuring E1, n, ¢

Novel Jet Observables from Machine Learning, arXiv:1710.01305 [hep-ph]

Energy flow polynomials: A complete linear basis for jet substructure, arXiv:1712.07124 [hep-ph]

Jet Substructure at the LHC: A Review of Recent Advances in Theory and Machine Learning, arXiv:1709.04464 [hep-ph]
Deep-learning Top Taggers or The End of QCD? JHEP 05 (2017) 006

New Developments for Jet Substructure Reconstruction in CMS, CMS-DP-2017-027

~ ML Techniques for the Identification of Hadronic W Bosons and Top Quarks in ATLAS, ATLAS-PHYS-PUB-2017-004

— Pileup mitigation Deep learning in color: towards automated quark/gluon jet discrimination, JHEP 01 (2016) 110
\ Quark versus Gluon Jet Tagging Using Jet Images with the ATLAS Detector, ATL-PHYS-PUB-2017-017
° Leptons Pileup Mitigation with Machine Learning (PUMML), JHEP 12 (2017) 051

— Tau classification and Eq, n, ¢

. Photons
— Photon classification and Et, n, ¢

. MET
— MET measurement

Electron classification and ET’ n, d)‘\ Calorimetry with Deep Learning: Particle Classification, Energy Regression, and Simulation for HEP, DLPS NIPS 2017 proceedings

Survey of ML Techniques for High Energy Electromagnetic Shower Classification, DLPS NIPS 2017 proceedings

Comp]ex and image-liké;
great for machine learning!

. also intimate coﬁnection with ML:
jets are defined by
unsupervised learning! -

Nachmann, ACAT 2017
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Neural Networks in a Nutshell

inputs can be...

features
(Nhitss Etot, €1C.)

or

low-level data
(tracks, hits /
clusters, particle
flow candidates

!
o
R

X
W

N

@I@

i
R
@;e;@

loss = ((f(5) = 1)?)signal + ((F () = 1)Ppig

(X)—
utput layer

input layer
hidden layer 1

(5

hidden layer 2

S; = EW‘] Sj

+ — signal

— background

« Multiple layers of nodes (“neurons”) interconnected with variable weights
— Train weights W;; by minimizing loss function, using backpropagation and steepest descent

« Universal Approximation Theorem: NNs can approximate any continuous function [1]
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https://link.springer.com/article/10.1007%2FBF02551274

Example of Jet Classification: W-tagging

250 < pT/GeV <300 GeV, 65 < mass/GeV <95

\s =13 TeV, Pythia 8

« Seminal work demonstrated W —j
tagging using jet images [1]

150 —

100

1/(Background Efficiency)

feature-based i
classifiers

DNNs +

e 121+AR
== MaxOut
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Random
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s
<
<
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£
0.8
Signal Efficiency e

[Translated] Pseudorapidity (n)

[1] de Oliveira, Kagan, Mackey, Nachman, Schwartzman,
“Jet-images — deep learning edition,” JHEP 07:069, 2016

250 < pIJGeV <260 GeV,0.19 < 1,, <0.21,79 <mass/GeV < 81

3
10 %
102 O

10 2
°

1 &
107
102
10°
10*
10°
10°
107
10°
10°

* DNN outperforms feature-based
classifiers = there is additional info in
the cells (beyond mass, 71, 4R)
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https://link.springer.com/article/10.1007%2FJHEP07%282016%29069

Jets: Selected Results

I

Pileup Mitigation deep Iearnlng_ln cc_)lor o top tagging
quark/gluon jet discrimination

*parton-level

*
| ‘ — parton-level . "DELPHESS, no PU
JHEP 12 (2017) 05 1 softKiller 35 ‘ ‘ ‘ ‘ 10 " SoFTDROP-+ N-subjettiness -
PUPPI Deep CNN (color) 1000 GeV Pythia MOTHEROFTAGGERS ===
g £ PUMML o 30 8103 | DEEr]’:")[l‘Z(l)Zr?ifl)l];::i
5 A § (grayscale) = N }
£ § p
g © 25 % l.‘;:,
< g CHITTI ST :)7 102 | 5
o - " - - o | ST TN = g
g Pileup Mitigation with €50l "°
2 Machine Learning” £ 2
o P L 1 s 10y s
[JHEP 01 (2016) PR 10 [T TR JHEP 05 (2017) 006 \\
- = 1o 02 04 06 08 0 1 : : : ‘ \
Oé to.(s-j | M;\A /1T.5 | 2.0 M 2.5 Quark Jet Efficiency 0 0.2 0.4 0.6 0.8
orrected Image Mass / True Image Mass . Signal cfficiency cs
9 9 red= transverse momenta of charged particles Stgnal efficency cs

green= the transverse momenta of neutral particles
blue= charged particle multiplicity

 DNNs and CNNs tend to outperform feature-based classifiers

- Caveats™: parton-level or fast simulation = no detector resolution, noise, PU,
dead cells, material upstream of calorimeter, etc
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