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Intro: Classification at Colliders

How do we identify electrons at LHC?
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Classification Techniques at Colliders

1. Cut-based selection
– Apply requirements on                      

human-designed features
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ATLAS Run 1 electron features [1]: 

[1] EPJC 74 (2014) 2941

https://link.springer.com/article/10.1140/epjc/s10052-014-2941-0


Classification Techniques at Colliders

1. Cut-based selection
– Apply requirements on                      

human-designed features

2. Multi-Variate Algorithms (MVA)
– Combine features using neural networks, 

boosted decision trees, likelihoods, etc.
– Exploit correlations between features
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ATLAS Run 2 electron likelihood [1]

[1] EPJC 79 (2019) 639

https://link.springer.com/article/10.1140/epjc/s10052-019-7140-6


Classification Techniques at Colliders

1. Cut-based selection
– Apply requirements on                      

human-designed features

2. Multi-Variate Algorithms (MVA)
– Combine features using neural networks, 

boosted decision trees, likelihoods, etc.
– Exploit correlations between features

3. Deep Learning
– Feed low-level data (e.g. calorimeter 

cells) directly to deep neural networks
– Potential to exploit information not 

contained in features
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LCD Calorimeter
• CLIC is a proposed CERN project for a linear accelerator of electrons and positrons to TeV 

energies (~ LHC for protons) 

• Not a real experiment yet, so we) can simulate data and make it public.  

• Simpler geometry than ATLAS…  

• The LCD calorimeter is an array of absorber material and silicon sensors  comprising the 
most granular calorimeter design available  

• Data is essentially a 3D image 

• So far several million Pi0, Elec, ChPi, Gamma. 10 to 510 GeV. Low energy and Jet 
samples planned. 

• ECAL (25x25x25) / HCAL (5x5x60) “window”. Aux info: Energy, …  

• First studies, π
0

 vs γ classification with various DNNs by summer students.  

• Code/results not collected… but should be easy to redo. 

• New version of dataset.  

• Some visualization code exists… Full running example in CaloDNN. 

• Many interesting problems: PID Classification, Energy Regression, Shower generative 
models. 

The LCD calorimeter
• CLIC is a CERN project for a linear 

accelerator of electrons and 
positrons to TeV energies (~ LHC for 
protons) 

• The LCD is the detector design 
associated to the project 

• The LCD calorimeter is an array of 
absorber material and silicon 
sensors 

• So far, the most granular (i.e., more 
“pixels”) calorimeter design 
available 
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A long way to an optimal network architecture

19

• From this first exercise, 
we still have sizeable 
improvement margin 
ahead 

• Planning for an 
extended 
hyperparameter 
optimization on the 
CSCS cluster in Lugano 

• Starting to work on 
regressions in parallel, 
with CERN/Caltech 
Summer students 

Calorimetry in one slide
• Most particles hitting a dense material develop a 

shower of particles  

• In this stochastic process, they loose energy, which 
is transmitted to the material 

• Properly instrumenting the material, this energy can 
be collected as an electronic signal and converted 
into an energy measurement 

• The shape of the shower is related to the nature of 
the particle 

• calorimeter fragmented in cells to allow particle 
identification from shower shape 

• each cell is a volume in space associated to an 
energy deposit

Electromagnetic 
shower (e, γ)

Hadronic shower 
(π, Κ, p, n, ..)
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Simulated energy showers produced by (left) electromagnetic particles (electrons or photons)
and (right) hadronic particles (charged or neutral pions) in the calorimeter of the Linear Collider
Detector.

shown in Figure 1, particles produced in LHC collisions traverse the detectors and deposit their
energy by “showering” in the calorimeters, which consist of a granular array of detecting elements
called “cells”. Identifying particles from their energy depositions in calorimeter cells bears a strong
resemblance to problems in machine vision, in which objects are reconstructed from intensity val-
ues in pixel arrays. This project focuses on applying deep neural nets to improve the identification
of particles produced in LHC collisions and recorded by the ATLAS detector. These improvements
will enhance the discovery reach for exotic new particles, such as those predicted by models of
supersymmetry or extra dimensions of spacetime. An observation of any such particle would trans-
form our understanding of the composition and fundamental laws of the universe.

6 Target Problem

A description of the specific research question(s) that the resources requested will be used
to answer and the scientific and societal impact of the proposed work. Include an explana-
tion of why a petascale resource of the leading-edge capability that Blue Waters represents
is necessary to address this research. If the proposal is for an Exploratory Allocation, ex-
plain why this is an exploratory project and what might be the outcome and next step if the
exploratory work succeeds.

The target problem of this project is to distinguish between different types of particles produced
in collisions at the LHC using deep nerual nets. Figure 1 shows a slice of the ATLAS detector
at the LHC. Two protons collide at the interaction point and produce particles that traverse the
detector. Six types of particles (electrons, muons, photons, charged and neutral hadrons, and
neutrinos) and their signatures in the electromagnetic and hadronic calorimeters are shown. For
illustration purposes, one particle of each type is shown, with each particle well-separated from the
others. In real LHC collisions, hundreds of particles are produced that overlap with one another,
and distinguishing between them is thus extremely challenging. This problem will grow steadily
worse in future data, since the LHC luminosity will increase, increasing the particle rates.

In early LHC data (2010), electrons, muons, and photons were selected from the large back-
grounds of charged and neutral hadronic particles using simple requirements on features such as

4

[1] BH, Farbin, Khattak, Pacela, Pierini, Vlimant, Spiropulu, Wei, Proceedings of the Deep Learning 
for Physical Sciences Workshop at Neural Information and Processing Systems (NIPS17)

single particle showers in a      
high-granularity 3D calorimeter

improved 
performance

e vs. p± ROC curve [1]

p± background efficiency

e 
si

gn
al

 e
ffi

ci
en

cy

https://dl4physicalsciences.github.io/


Classification Techniques at Colliders

1. Cut-based selection
– Apply requirements on                      

human-designed features
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shown in Figure 1, particles produced in LHC collisions traverse the detectors and deposit their
energy by “showering” in the calorimeters, which consist of a granular array of detecting elements
called “cells”. Identifying particles from their energy depositions in calorimeter cells bears a strong
resemblance to problems in machine vision, in which objects are reconstructed from intensity val-
ues in pixel arrays. This project focuses on applying deep neural nets to improve the identification
of particles produced in LHC collisions and recorded by the ATLAS detector. These improvements
will enhance the discovery reach for exotic new particles, such as those predicted by models of
supersymmetry or extra dimensions of spacetime. An observation of any such particle would trans-
form our understanding of the composition and fundamental laws of the universe.

6 Target Problem

A description of the specific research question(s) that the resources requested will be used
to answer and the scientific and societal impact of the proposed work. Include an explana-
tion of why a petascale resource of the leading-edge capability that Blue Waters represents
is necessary to address this research. If the proposal is for an Exploratory Allocation, ex-
plain why this is an exploratory project and what might be the outcome and next step if the
exploratory work succeeds.

The target problem of this project is to distinguish between different types of particles produced
in collisions at the LHC using deep nerual nets. Figure 1 shows a slice of the ATLAS detector
at the LHC. Two protons collide at the interaction point and produce particles that traverse the
detector. Six types of particles (electrons, muons, photons, charged and neutral hadrons, and
neutrinos) and their signatures in the electromagnetic and hadronic calorimeters are shown. For
illustration purposes, one particle of each type is shown, with each particle well-separated from the
others. In real LHC collisions, hundreds of particles are produced that overlap with one another,
and distinguishing between them is thus extremely challenging. This problem will grow steadily
worse in future data, since the LHC luminosity will increase, increasing the particle rates.

In early LHC data (2010), electrons, muons, and photons were selected from the large back-
grounds of charged and neutral hadronic particles using simple requirements on features such as
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https://dl4physicalsciences.github.io/


Example: “In-painting” with Deep Learning [1]

• Make progress by understanding the structure of the data
– Not just more computational power and larger datasets 
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[2] Ulyanov, Vedaldi, Lempitsky,
“Deep Image Prior,” 1711.10925

deep 
learning

[1] from slides by Jessie Thaler 

corrupted image “in-painted” image
using deep neural networks [2]

https://arxiv.org/abs/1711.10925
https://indico.cern.ch/event/813845/contributions/3394465/attachments/1890829/3118217/jthaler_USATLAS_UMass_ML.pdf


Machine Learning at Colliders
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• Particle detectors record enormous volumes of complex 3D “images” 
Ø Multiple sub-detectors, cell sizes, complex η-dependence, 3D structure, etc…
Ø Use machine learning techniques to exploit all available information

[1] CEPC CDR Vol. II

http://cepc.ihep.ac.cn/CEPC_CDR_Vol2_Physics-Detector.pdf


Neural Network Architectures
• Fully-Connected Networks (FCN)

– Multiple layers of fully inter-connected 
neurons with variable weights

– Structure-agnostic ➝ widely applicable
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Neural Network Architectures
• Fully-Connected Networks (FCN)

– Multiple layers of fully inter-connected 
neurons with variable weights

– Structure-agnostic ➝ widely applicable

• Convolutional Neural Networks (CNN)
– Specialized layers (“convolutional filters”) 

identify structures at different scales
– Computer vision / imaging applications 
– Assumes fixed-length input data
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Even more non-linearity: Going Deep

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  

Jet Image

Convolution Max-Pool Convolution Max-Pool Flatten

Fully  
Connected 
ReLU Unit

ReLU Dropout ReLU Dropout
Local 

Response 
Normalization

W’→ WZ event

Convolutions
Convolved  

Feature Layers

Max-Pooling

Repeat

Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb 

 
aStanford University, Institute for Computational and Mathematical Engineering (ICME), bSLAC National Accelerator Laboratory,  cStanford University, Department of Statistics 

Repeat

Apply deep learning techniques on jet images! [3]

convolutional nets are a standard image 
processing technique; also consider maxout

Figure 5: The convolution neural network concept as applied to jet-images.

4.1 Architectural Selection

For the MaxOut architecture, we utilize two FC layers with MaxOut activation (the first with 256
units, the second with 128 units, both of which have 5 piecewise components in the MaxOut-operation),
followed by two FC layers with ReLU activations (the first with 64 units, the second with 25 units),
followed by a FC sigmoid layer for classification. We found that the He-uniform initialization [35]
for the initial MaxOut layer weights was needed in order to train the network, which we suspect is
due to the sparsity of the jet-image input. In cases where other initialization schemes were used, the
networks often converged to very sub optimal solutions. This network is trained (and evaluated) on
un-normalized jet-images using the transverse energy for the pixel intensities

For the deep convolution networks, we use a convolutional architecture consisting of three sequen-
tial [Conv + Max-Pool + Dropout] units, followed by a local response normalization (LRN) layer [8],
followed by two fully connected, dense layers. We note that the convolutional layers used are so called
“full” convolutions – i.e., zero padding is added the the input pre-convolution. Our architecture can
be succinctly written as:

[Dropout ! Conv ! ReLU ! MaxPool] ⇤ 3 ! LRN ! [Dropout ! FC ! ReLU] ! Dropout ! Sigmoid.

(4.1)
The convolution layers each utilize 32 feature maps, or filters, with filter sizes of 11 ⇥ 11, 3 ⇥ 3,

and 3 ⇥ 3 respectively. All convolution layers are regularized with the L
2 weight matrix norm. A

down-sampling of (2, 2), (3, 3), and (3, 3) is performed by the three max pooling layers, respectively.
A dropout [8] of 20% is used before the first FC layer, and a dropout 10% is used before the output
layer. The FC hidden layer consists of 64 units.

After early experiments with the standard 3 ⇥ 3 filter size, we discovered significantly worse
performance over a more basic MaxOut [7] feedforward network. After further investigation into larger
convolutional filter size, we discovered that larger-than-normal filters work well on our application.
Though not common in the Deep Learning community, we hypothesize that this larger filter size is
helpful when dealing with sparse structures in the input images. In Table 1, we compare di↵erent
filter sizes, finding the optimal filter size of 11⇥ 11, when considering the Area Under the ROC Curve
(AUC) metric, based on the ROC curve outlined in Sections 3 and 5.

– 8 –

[1] de Oliveira, Kagan, Mackey, Nachmann, Schwartzman,
“Jet Images – Deep Learning Edition”, JHEP07 (2016) 069

is more di↵use for the QCD background which consists largely of gluon jets, which have an octet
radiation pattern, compared to the singlet radiation pattern of the W jets, where the radiation is
mostly restricted to the region between the two hard cores.
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Figure 2: The average jet image for signal W jets (top) and background QCD jets (bottom) before
(left) and after (right) applying the rotation, re-pixelation, and inversion steps of the pre-processing.
The average is taken over images of jets with 240 GeV < pT < 260 GeV and 65 GeV < mass < 95 GeV.

One standard pre-processing step that is often additionally applied in Computer Vision tasks is
normalization. A common normalization scheme is the L

2 norm such that
P

I
2
i = 1 where Ii is the

intensity of pixel i. This is particularly useful for the jet images where pixel intensities can span many
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W➝jj

is more di↵use for the QCD background which consists largely of gluon jets, which have an octet
radiation pattern, compared to the singlet radiation pattern of the W jets, where the radiation is
mostly restricted to the region between the two hard cores.
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Figure 2: The average jet image for signal W jets (top) and background QCD jets (bottom) before
(left) and after (right) applying the rotation, re-pixelation, and inversion steps of the pre-processing.
The average is taken over images of jets with 240 GeV < pT < 260 GeV and 65 GeV < mass < 95 GeV.

One standard pre-processing step that is often additionally applied in Computer Vision tasks is
normalization. A common normalization scheme is the L

2 norm such that
P

I
2
i = 1 where Ii is the

intensity of pixel i. This is particularly useful for the jet images where pixel intensities can span many

– 4 –

QCD jet

vs.

η η

Φ Φ

https://link.springer.com/article/10.1007/JHEP07(2016)069


Neural Network Architectures
• Fully-Connected Networks (FCN)

– Multiple layers of fully inter-connected 
neurons with variable weights

– Structure-agnostic ➝ widely applicable

• Convolutional Neural Networks (CNN)
– Specialized layers (“convolutional filters”) 

identify structures at different scales
– Computer vision / imaging applications 
– Assumes fixed-length input data
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Even more non-linearity: Going Deep

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  

Jet Image

Convolution Max-Pool Convolution Max-Pool Flatten

Fully  
Connected 
ReLU Unit

ReLU Dropout ReLU Dropout
Local 

Response 
Normalization

W’→ WZ event

Convolutions
Convolved  

Feature Layers

Max-Pooling

Repeat

Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb 

 
aStanford University, Institute for Computational and Mathematical Engineering (ICME), bSLAC National Accelerator Laboratory,  cStanford University, Department of Statistics 

Repeat

Apply deep learning techniques on jet images! [3]

convolutional nets are a standard image 
processing technique; also consider maxout

Figure 5: The convolution neural network concept as applied to jet-images.

4.1 Architectural Selection

For the MaxOut architecture, we utilize two FC layers with MaxOut activation (the first with 256
units, the second with 128 units, both of which have 5 piecewise components in the MaxOut-operation),
followed by two FC layers with ReLU activations (the first with 64 units, the second with 25 units),
followed by a FC sigmoid layer for classification. We found that the He-uniform initialization [35]
for the initial MaxOut layer weights was needed in order to train the network, which we suspect is
due to the sparsity of the jet-image input. In cases where other initialization schemes were used, the
networks often converged to very sub optimal solutions. This network is trained (and evaluated) on
un-normalized jet-images using the transverse energy for the pixel intensities

For the deep convolution networks, we use a convolutional architecture consisting of three sequen-
tial [Conv + Max-Pool + Dropout] units, followed by a local response normalization (LRN) layer [8],
followed by two fully connected, dense layers. We note that the convolutional layers used are so called
“full” convolutions – i.e., zero padding is added the the input pre-convolution. Our architecture can
be succinctly written as:

[Dropout ! Conv ! ReLU ! MaxPool] ⇤ 3 ! LRN ! [Dropout ! FC ! ReLU] ! Dropout ! Sigmoid.

(4.1)
The convolution layers each utilize 32 feature maps, or filters, with filter sizes of 11 ⇥ 11, 3 ⇥ 3,

and 3 ⇥ 3 respectively. All convolution layers are regularized with the L
2 weight matrix norm. A

down-sampling of (2, 2), (3, 3), and (3, 3) is performed by the three max pooling layers, respectively.
A dropout [8] of 20% is used before the first FC layer, and a dropout 10% is used before the output
layer. The FC hidden layer consists of 64 units.

After early experiments with the standard 3 ⇥ 3 filter size, we discovered significantly worse
performance over a more basic MaxOut [7] feedforward network. After further investigation into larger
convolutional filter size, we discovered that larger-than-normal filters work well on our application.
Though not common in the Deep Learning community, we hypothesize that this larger filter size is
helpful when dealing with sparse structures in the input images. In Table 1, we compare di↵erent
filter sizes, finding the optimal filter size of 11⇥ 11, when considering the Area Under the ROC Curve
(AUC) metric, based on the ROC curve outlined in Sections 3 and 5.

– 8 –

[1] de Oliveira, Kagan, Mackey, Nachmann, Schwartzman,
“Jet Images – Deep Learning Edition”, JHEP07 (2016) 069

is more di↵use for the QCD background which consists largely of gluon jets, which have an octet
radiation pattern, compared to the singlet radiation pattern of the W jets, where the radiation is
mostly restricted to the region between the two hard cores.
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Figure 2: The average jet image for signal W jets (top) and background QCD jets (bottom) before
(left) and after (right) applying the rotation, re-pixelation, and inversion steps of the pre-processing.
The average is taken over images of jets with 240 GeV < pT < 260 GeV and 65 GeV < mass < 95 GeV.

One standard pre-processing step that is often additionally applied in Computer Vision tasks is
normalization. A common normalization scheme is the L

2 norm such that
P

I
2
i = 1 where Ii is the

intensity of pixel i. This is particularly useful for the jet images where pixel intensities can span many
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W➝jj

is more di↵use for the QCD background which consists largely of gluon jets, which have an octet
radiation pattern, compared to the singlet radiation pattern of the W jets, where the radiation is
mostly restricted to the region between the two hard cores.
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Figure 2: The average jet image for signal W jets (top) and background QCD jets (bottom) before
(left) and after (right) applying the rotation, re-pixelation, and inversion steps of the pre-processing.
The average is taken over images of jets with 240 GeV < pT < 260 GeV and 65 GeV < mass < 95 GeV.

One standard pre-processing step that is often additionally applied in Computer Vision tasks is
normalization. A common normalization scheme is the L

2 norm such that
P

I
2
i = 1 where Ii is the

intensity of pixel i. This is particularly useful for the jet images where pixel intensities can span many
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QCD jet

vs.

η η

Φ Φ

exploits 
extensive 
computer 
vision R&D

https://link.springer.com/article/10.1007/JHEP07(2016)069


Neural Network Architectures
• Fully-Connected Networks (FCN)

– Multiple layers of fully inter-connected 
neurons with variable weights

– Structure-agnostic ➝ widely applicable

• Convolutional Neural Networks (CNN)
– Specialized layers (“convolutional filters”) 

identify structures at different scales
– Computer vision / imaging applications 
– Assumes fixed-length input data

• Recurrent Neural Networks (RNN)
– Cyclical structures allow for                

variable-length input data
Ø e.g. Particle Flow Candidate p4’s

– Language processing applications

Sept 18, 2019 University of Chicago 13

!+
"
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!+

jet
constituents

type, pT, η, Φ

sentence
words
letters

“pm_pt3.5_eta1.1_phi0.2 pp_pt5.6_eta0.3_phi1.8 g_pt10.5_eta1.4_phi0.3 pp_pt3.5_eta1.1_phi1.2.” 

Louppe, Cho, Becot, Cranmer, QCD-Aware RNNs for Jet Physics, 1702.00748
Cheng, RNNs for Quark/Gluon Tagging, CSBS (2018) 2:3
ATLAS, b-tagging with RNNs, ATL-PHYS-PUB-2017-003 

exploits extensive language processing and 
translation R&D (e.g. google translate)

https://arxiv.org/abs/1702.00748
https://link.springer.com/article/10.1007%2Fs41781-018-0007-y
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2017-003/


Neural Network Architectures
• Fully-Connected Networks (FCN)

– Multiple layers of fully inter-connected 
neurons with variable weights

– Structure-agnostic ➝ widely applicable

• Convolutional Neural Networks (CNN)
– Specialized layers (“convolutional filters”) 

identify structures at different scales
– Computer vision / imaging applications 
– Assumes fixed-length input data

• Recurrent Neural Networks (RNN)
– Cyclical structures allow for                

variable-length input data
Ø e.g. Particle Flow Candidate p4’s

– Language processing applications

• Generative Adversarial Networks (GAN)
– Generate ensembles of pseudo-data
– Fast simulation applications
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Paganini, de Oliveira, Nachman, CaloGAN for 
3D particle showers, PRD 97, 014021 (2018)

generated output images
(for 3 ATLAS ECAL layers)

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.97.014021


ML Use Cases at Colliders
• Fully-Connected Networks (FCN)

– Multiple layers of fully inter-connected 
neurons with variable weights

– Structure-agnostic ➝ widely applicable

• Convolutional Neural Networks (CNN)
– Specialized layers (“convolutional filters”) 

identify structures at different scales
– Computer vision / imaging applications 
– Assumes fixed-length input data

• Recurrent Neural Networks (RNN)
– Cyclical structures allow for                

variable-length input data
Ø e.g. Particle Flow Candidate p4’s

– Language processing applications

• Generative Adversarial Networks (GAN)
– Generate ensembles of pseudo-data
– Fast simulation applications

Sept 18, 2019 University of Chicago 15

classification
• objects: jet classification, particle ID, etc.
• events: ! ̅!#(%&%) vs. ! ̅! + %&%, SUSY vs. ! ̅! , etc.
• “supervised” (labeled data) or “unsupervised”

measurements with regression
• objects: jet and lepton energies and angles
• events: total / hadronic / missing energy, mH

fast simulation
e.g. particle showers in calorimeters



Collider Analysis Flow Chart
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MC data physics!
1. Generation
of truth information

2. Simulation
of detector response

3. Reconstruction
of physics objects

4. Analysis
of physics objects

CEPC CDR Vol. II

http://cepc.ihep.ac.cn/CEPC_CDR_Vol2_Physics-Detector.pdf


Machine Learning Use Cases
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MC data physics!

generative models
(e.g. calorimeter showers)

object classification
(e.g. particle ID, b-tagging)

object regression
(e.g. E, θ, ϕ)

event classification
(e.g. ttH vs. tt+bb)

event regression
(e.g. MHiggs)

unsupervised classification
(e.g. tracking, clustering,
track-cluster matching)

1. Generation
of truth information

2. Simulation
of detector response

3. Reconstruction
of physics objects

4. Analysis
of physics objects

http://cepc.ihep.ac.cn/CEPC_CDR_Vol2_Physics-Detector.pdf


Fast Simulation with GANs
• Future colliders will require enormous MC event samples: 

• 50-70% of ATLAS computing resources (billions of CPU hours/year) spent on 
simulation [1] ➝ dominated by particle showers in calorimeters

• Can use GANs to quickly generate large ensembles of calorimeter showers

• Alternative: “frozen shower” approach [2]

Sept 18, 2019 University of Chicago 18

CEPC operation plan:

~1 trillion Z bosons!
(20× more than in 3000 fb-1 LHC14 data)

[1] CERN-RRB-2015-014
[2] ATLAS Fast Shower Simulation

https://cds.cern.ch/record/2002240
https://iopscience.iop.org/article/10.1088/1742-6596/119/3/032008


Tracking with ML
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ComputingandSoftwarePublicResults

going from hits…               to tracks…                        is computationally expensive:

• Major challenge for HL-LHC 
and future hadron colliders!

Images from J.R. Vlimant, CEPC Oxford Workshop

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults
https://indico.cern.ch/event/783429/timetable/?print=1&view=standard


Tracking with ML
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Facebook AI Research (FAIR)
https://arxiv.org/pdf/1604.02135.pdf

Images from J.R. Vlimant, CEPC Oxford Workshop

ComputingandSoftwarePublicResults

going from hits…               to tracks…                        is computationally expensive:

• Major challenge for HL-LHC 
and future hadron colliders!

• Can leverage unsupervised 
learning techniques to group 
hits into tracks

• Subject of TrackML challenge

https://arxiv.org/pdf/1604.02135.pdf
https://indico.cern.ch/event/783429/timetable/?print=1&view=standard
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults
https://sites.google.com/site/trackmlparticle/


Jet Classification at LHC [1]

Sept 18, 2019 University of Chicago 21

++ =  mass from QCD radiation

[1] from slides by Jessie Thaler 
see also recent reviews:
Larkoski, Moult, Nachman, 1709.04464,
Marzani, Soyez, Spannowsky, 1901.10342

deep 
learning

• Deep learning approach often provides best 
performance for jet classification tasks

top tagger performance:

https://indico.cern.ch/event/813845/contributions/3394465/attachments/1890829/3118217/jthaler_USATLAS_UMass_ML.pdf
https://arxiv.org/abs/1709.04464
https://arxiv.org/abs/1901.10342


Jet Classification at LHC [1]
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++ =  mass from QCD radiation

[1] from slides by Jessie Thaler 
see also recent reviews:
Larkoski, Moult, Nachman, 1709.04464,
Marzani, Soyez, Spannowsky, 1901.10342

deep 
learning

• Deep learning approach often provides best 
performance for jet classification tasks
• But not always… possible to design clever features!

top tagger performance:

“The FCN with one subset consisting of fourteen observables shows nearly no degradation of 
performance. This indicates that these fourteen expert-designed observables could have 
captured the most necessary information for separating quark and gluon jets.”

- Luo, Wang, Xu, Zhu, quark/gluon discrimination with FCNs, 
Science China Phys., Mech. Astron. (2019) 62:991011

https://indico.cern.ch/event/813845/contributions/3394465/attachments/1890829/3118217/jthaler_USATLAS_UMass_ML.pdf
https://arxiv.org/abs/1709.04464
https://arxiv.org/abs/1901.10342
https://link.springer.com/article/10.1007%2Fs11433-019-9390-8


Jets at Future Hadron Colliders
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[1] Arkani-Hamed, Mangano, Han, Wang, “Physics Opportunities at a 100 TeV pp collider”, Physics Reports 652 (2016) 1-49 
[2] Mangano et al., “Physics at a 100 TeV pp collider: SM processes”, 1607.01831
[3] Salam, ”Principles of Multi-TeV boosted objects”, Higgs & BSM at 100 TeV workshop

• High pT jets radiate W 
bosons at large rates [1]

• Large Lorentz boost ➝ highly collimated     
W / Z bosons ➝ calo granularity is crucial [2]

• top decays become as collimated as b 
decays at LHC ➝ top quarks vs. top jets [3]

• “Boosted techniques will be essential 
at 100 TeV [hadron collider]” [3]

• Good use case for deep learning

https://www.sciencedirect.com/science/article/abs/pii/S0370157316301855?via%3Dihub
https://arxiv.org/abs/1607.01831
https://indico.cern.ch/event/352868/


Particle ID at Future e+e- Collider
• Electrons and muons are crucial for precision Z⟶ℓℓ electroweak 

measurements and leptonic Higgs decays

Sept 18, 2019 University of Chicago 24

• LICH algo [1] calculates e and # likelihoods 
Le, L# using 24 features combined into BDT
– dE/dx, # ECAL / HCAL hits, spatial shower shape 

info, energy distribution, fractal dimension [2]
– Similar approach for b-tagging with LCFIPlus [3]

CEPC CDR Vol. II

log10(L#)
lo

g 1
0(L

e)
[1] Yu, Ruan, Boudry, Videau, EPJC 77 (2017) no. 9
[2] Ruan, Jeans, Boudry, Brient, Videau, PRL 112(1), 012001, 2014
[3] Suehara, Tanabe, NIM A 808 (2016) 109, and see talk from Wei-Ming Yao

http://cepc.ihep.ac.cn/CEPC_CDR_Vol2_Physics-Detector.pdf
http://dx.doi.org/10.1140/epjc/s10052-017-5146-5
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.012001
https://www.sciencedirect.com/science/article/pii/S0168900215014199?via%3Dihub
https://indico.cern.ch/event/820586/contributions/3551243/attachments/1908931/3154693/cepc_tracking_chicago2019.pdf


Particle ID at Future e+e- Collider
• Electrons and muons are crucial for precision Z⟶ℓℓ electroweak 

measurements and leptonic Higgs decays
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• LICH algo [1] calculates e and # likelihoods 
Le, L# using 24 features combined into BDT
– dE/dx, # ECAL / HCAL hits, spatial shower shape 

info, energy distribution, fractal dimension [2]
– Similar approach for b-tagging with LCFIPlus [3]

CEPC CDR Vol. II
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GoogLeNet
Convolutional NN
Deep Neural Network
Boosted Decision Tree

ROC curve for e vs. π± classifier
with high granularity 3D calorimeter:

improvement

to appear soon

see also: de Oliveira, Nachman, Paganini, EM 
showers beyond shower shapes, 1806.05667

http://cepc.ihep.ac.cn/CEPC_CDR_Vol2_Physics-Detector.pdf
https://arxiv.org/abs/1806.05667


!0("") vs. " discrimination at Future e+e- Collider
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!0
"
"

• !0("") reconstruction crucial for τ and heavy flavor physics 
– Optimize calorimeter granularity by determining efficiency to reconstruct both photons from       

!0 ⟶ "" decay vs. distance between " calorimeter impact points, for different cell sizes

CEPC CDR Vol. II

http://cepc.ihep.ac.cn/CEPC_CDR_Vol2_Physics-Detector.pdf


!0("") vs. " discrimination at Future e+e- Collider
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!0
"
"

• !0("") reconstruction crucial for τ and heavy flavor physics 
– Optimize calorimeter granularity by determining efficiency to reconstruct both photons from       

!0 ⟶ "" decay vs. distance between " calorimeter impact points, for different cell sizes

CEPC CDR Vol. II

ROC curve for " vs. π0⟶"" classifier
with high granularity CLIC LDC calorimeter:

π0⟶"" background efficiency

GoogLeNet
Convolutional NN
Deep Neural Network
Boosted Decision Tree

"s
ig

na
l e

ffi
cie

nc
y

good use case for CNN imaging!

improved

performance

to appear soon

http://cepc.ihep.ac.cn/CEPC_CDR_Vol2_Physics-Detector.pdf


Performance Requirements
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Future e+e- collider performance requirements [1] 

[1] CEPC CDR Vol. II

http://cepc.ihep.ac.cn/CEPC_CDR_Vol2_Physics-Detector.pdf


Possible Performance Enhancements with Deep Learning
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Future e+e- collider performance requirements [1] 

• b/c-tagging RNN [2,3]
• quark / gluon discrimination RNN / CNN [4-6]
• jet energy regression with NNs [4,7]
• ! vs. "0(!!) discrimination with CNNs [8]
• E!, #$!! regression for improved M!! resolution [8]

[1] CEPC CDR Vol. II
[2] ATLAS, b-tagging with RNNs, ATL-PHYS-PUB-2017-003 
[3] CMS, Heavy flavor identification with DNNs, CMS-DP-2017-005
[4] Larkoski, Moult, Nachman, 1709.04464 and references therein
[5] ATLAS, q/g tagging with jet images, ATL-PHYS-PUB-2017-017
[6] Cheng, RNNs for Quark/Gluon Tagging, CSBS (2018) 2:3
[7] ATLAS, NN approach to jet calibration, ATL-PHYS-PUB-2018-013
[8] BH et al., Calorimetry with Deep Learning, NeurIPS2017

http://cepc.ihep.ac.cn/CEPC_CDR_Vol2_Physics-Detector.pdf
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2017-003/
http://cds.cern.ch/record/2255736
https://arxiv.org/abs/1709.04464
https://cds.cern.ch/record/2275641?ln=en
https://link.springer.com/article/10.1007%2Fs41781-018-0007-y
http://cdsweb.cern.ch/record/2630972
https://dl4physicalsciences.github.io/files/nips_dlps_2017_15.pdf


Training with Data: Weak Supervised Learning

• Challenge: we can’t rely on MC to model low-level inputs perfectly

• Train on data using weakly-supervised learning with signal-enriched and 
background-enriched data samples

• Rely on MC only for signal and background fractions of the two samples (and vary 
this fraction to estimate systematic uncertainty)

Sept 18, 2019 University of Chicago 30

(LoLiProp?)

𝑓1 𝑓2

[L. Dery, et al., arXiv: 1702.00414]

Learning from Label Proportions (LLP) 

ℓLLP =෍
𝑎

ℓ 𝑓𝑎,
1
𝑁𝑎

෍
𝑖=1

𝑁𝑎

ℎ(𝑥)

Q/G WS with 3 inputs works 
[L. Dery, et al., arXiv: 1702.00414]

ℓ𝑀𝑆𝑊, ℓ𝐶𝐸, …

In the weakly supervised training used in the following examples, f 0 in Eq. 2.2 is parametrized as
a three-layer neural network with three inputs, a hidden layer with 30 neurons, and a sigmoid output.
We use the Adam optimizer [8] in Keras [9] with a learning rate of 0.009 and train for 25 iterations.
As reference, we consider a traditional classifier

ffull = argminf 0:Rn![0,1]` (f
0(xi)� ti) , (2.5)

where ti labels the individual instances and f 0 is parametrized as a three-layer neural network with
three inputs, a hidden layer with 10 neurons, and a sigmoid output. Minimization is performed with
stochastic gradient descent in Keras with a learning rate of 0.01 run for 40 iterations. For each training,
both networks are initialized with random weights, following a normal distribution.

Figure 1: Receiver Operator Characteristic (ROC) curves for instance classification, using three
individual features and then combined using a fully supervised network and the weakly supervised
classifier. One performance metric is the Area Under the Curve (AUC) which is the integral of the
ROC curve.

Feature µ0 �0 µ1 �1

1 26 8 18 7
2 0.09 0.04 0.06 0.04
3 0.28 0.04 0.23 0.05

Table 1: Mean (µ) and standard deviation (�) values of the normal distributions for class 0 and 1 of
each feature.

Figure 1 shows the weakly supervised classifier performance when training with 9 subsets of data
with proportions between 0.2 and 0.4 compared with that of the fully supervised one. Three features,
labeled 1 � 3 are constructed so that the distribution of feature i given class j follows a normal
distribution with mean µij and standard deviation �ij . For reference, the values of µij and �ij used for
the example shown in Fig. 1 are in Table. 1. Both the traditional and weakly supervised classifiers have
the same Receiver Operator Characteristic (ROC) and thus have identical classification performance.

– 3 –

Dery, Nachman, Rubbo, Schwartzman, “Weakly Supervised 
Classification in High Energy Physics”, JHEP 05 (2017) 145



(One) Strategy for ML Event Classification

• Factorize the problem: object tagging + event classification
– Use cells to classify type and measure p4’s of physics objects (e, !, ", #, j, MET)
– Use object types and p4’s to categorize events (e.g. SM vs. SUSY) with e.g. RNNs
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this
talk

! (45 GeV) e (55 GeV) 

jet1 (73 GeV) 

MET (30 GeV) 
jet2 (43 GeV) 

object classification
& regression

NN ( e, ET,e, $e, %e )
cell 1
cell 2

.
cell N

NN ( jet, ET,j, $j, %j )
cell 1
cell 2

.
cell N

NN ( MET, ET, 0, %e)
cell 1
cell 2

.
cell N

event categorization

NN Prob(SUSY)
Prob(SM)



Classifying Events with BDTs
• Feature-based BDT event classifiers in wide use by ATLAS & CMS
• Be wary of “tails” ➝ also perform cut-based analysis, and compare results
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CMS Run 1 stop 1L search,
EPJC 73(12):2677, 2013
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BDT vs. cut-based approach:

https://link.springer.com/article/10.1140%2Fepjc%2Fs10052-013-2677-2


Alternative Methods for Event Classification

1. Deep learning approach: feed low-level data              
(e.g. particle flow object p4’s) directly to DNN

2. Transform low-level data to “rapidity-mass 
matrices” and train shallow NNs [1,2]

3. Matrix Element Likelihood Analysis (MELA)
Ø Interesting option for future e+e- colliders (with excellent 

detector resolution)
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[1] Chekanov, “Imaging particle collision data for event classification using machine learning”, NIM A 931 (2019) 92
[2] Chekanov, “Machine learning using rapidity-mass matrices for event classification problems in HEP”, 1810.06669 

https://www.sciencedirect.com/science/article/pii/S0168900219304796?via%3Dihub
https://arxiv.org/abs/1810.06669


Summary

• Wide variety of machine learning techniques available for 
collider classification, regression, and fast simulation tasks

• Feature-based classifiers widely used in ATLAS and CMS and 
under study for future colliders

• Deep learning approach with low-level inputs has been shown 
to provide better performance for some problems
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Additional Material
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B-tagging with ML
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Slide from Wei-Ming Yao

https://indico.cern.ch/event/820586/contributions/3551243/attachments/1908931/3154693/cepc_tracking_chicago2019.pdf


Looking Inside the Black Box
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Larkoski, Moult, Nachman, 1709.04464,

https://arxiv.org/abs/1709.04464


Looking Inside the Black Box 
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Larkoski, Moult, Nachman, 1709.04464,

https://arxiv.org/abs/1709.04464


Systematic Uncertainties
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[Barnard, Dawe, Dolan, Rajcic, 1609.00607]

• jet images (or sequences) depend 
on the generator ➝ 3 approaches
– Build in dependence on nuisance 

parameters to network                                  
[Baldi, Cranmer, Faucett, Sadowski, Whiteson, 1601.07913]

– Minimize network dependence on 
nuisance parameters                                  
[Louppe, Kagan, Cranmer, 1611.01046]

– Train with data using weak 
supervised learning



Data Representations
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Larkoski, Moult, Nachman, 1709.04464,

https://arxiv.org/abs/1709.04464


Data Representations: Fixed- vs. Variable-Length
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is more di↵use for the QCD background which consists largely of gluon jets, which have an octet
radiation pattern, compared to the singlet radiation pattern of the W jets, where the radiation is
mostly restricted to the region between the two hard cores.
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Figure 2: The average jet image for signal W jets (top) and background QCD jets (bottom) before
(left) and after (right) applying the rotation, re-pixelation, and inversion steps of the pre-processing.
The average is taken over images of jets with 240 GeV < pT < 260 GeV and 65 GeV < mass < 95 GeV.

One standard pre-processing step that is often additionally applied in Computer Vision tasks is
normalization. A common normalization scheme is the L

2 norm such that
P

I
2
i = 1 where Ii is the

intensity of pixel i. This is particularly useful for the jet images where pixel intensities can span many
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• Images
– Fixed length

representation
– Inputs are individual            

pixel/cell energies
– Use computer vision

techniques (CNN/DNN)

• Sequences / trees
– Variable length 

representation
– Inputs are tracks, clusters, 

or PF candidates 
– Use language processing 

(RNN/LSTM/GRU)

• Graphs
– Variable length 

representation
– Inputs are tracks, clusters,     

or PF candidates 
– Use Message-Passing  

Neural Networks (MPNN)

Jet-Images – Deep Learning Edition, 1511.05190 QCD-Aware RNNs for Jet Physics, 1702.00748 Neural Message Passing for Jet Physics, NIPS DLPS 107
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Data Representations: Fixed- vs. Variable-Length
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is more di↵use for the QCD background which consists largely of gluon jets, which have an octet
radiation pattern, compared to the singlet radiation pattern of the W jets, where the radiation is
mostly restricted to the region between the two hard cores.
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Figure 2: The average jet image for signal W jets (top) and background QCD jets (bottom) before
(left) and after (right) applying the rotation, re-pixelation, and inversion steps of the pre-processing.
The average is taken over images of jets with 240 GeV < pT < 260 GeV and 65 GeV < mass < 95 GeV.

One standard pre-processing step that is often additionally applied in Computer Vision tasks is
normalization. A common normalization scheme is the L

2 norm such that
P

I
2
i = 1 where Ii is the

intensity of pixel i. This is particularly useful for the jet images where pixel intensities can span many
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• Images
– Fixed length

representation
– Inputs are individual            

pixel/cell energies
– Use computer vision

techniques (CNN/DNN)

• Sequences / trees
– Variable length 

representation
– Inputs are tracks, clusters, 

or PF candidates 
– Use language processing 

(RNN/LSTM/GRU)

• Graphs
– Variable length 

representation
– Inputs are tracks, clusters,     

or PF candidates 
– Use Message-Passing  

Neural Networks (MPNN)

Jet-Images – Deep Learning Edition, 1511.05190 QCD-Aware RNNs for Jet Physics, 1702.00748 Neural Message Passing for Jet Physics, NIPS DLPS 107
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First step: representations

Easy to visualize
Benefit from image processing literature
Exploits full info (including distance btw pixels)
Images are sparse and w/o clear edges
Preprocessing is non-trivial
Non-trivial convolutional filters for non-uniform 
cell sizes

Captures all constituents with full granularity
Can handle sparse images and non-uniform 
cell sizes
Exploits calo. reconstruction (cells⟶clusters)
No unique order / structure
Each node is connected only to neighbor

Captures all constituents with full granularity
Can learn jet clustering algo (adjacency matrix)
Can be non-local
Non-trivial to visualize

Ben Nachman, CMS SMP-J annual workshop 2018



• Images
– Fixed length

representation
– Inputs are individual            

cell energies
– Use computer vision

techniques (CNN/DNN)

• Sequences / trees
– Variable length 

representation
– Inputs are jet constituents                

(tracks & clusters or                             
PF candidates) 

– Use language processing 
(RNN/LSTM/GRU)
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• Graphs
– Variable length 

representation
– Inputs are tracks, clusters,     

or PF candidates 
– Use Message-Passing  

Neural Networks (MPNN)

Jet-Images – Deep Learning Edition, 1511.05190 QCD-Aware RNNs for Jet Physics, 1702.00748 Neural Message Passing for Jet Physics, NIPS DLPS 107
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Can handle sparse images and non-uniform 
cell sizes
Exploits calo. reconstruction (cells⟶clusters)
No unique order / structure
Each node is connected only to neighbor

Captures all constituents with full granularity
Can learn jet clustering algo (adjacency matrix)
Can be non-local
Non-trivial to visualize

Ben Nachman, CMS SMP-J annual workshop 2018

Data Representations: Variable-Length Representations

arXiv:1810.05165 [hep-ph]

arXiv:1801.07829 [cs.CV]

order-independent variable-length representations!

https://arxiv.org/abs/1810.05165
https://arxiv.org/abs/1801.07829
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Exploits calo. reconstruction (cells⟶clusters)
No unique order / structure
Each node is connected only to neighbor

Captures all constituents with full granularity
Can learn jet clustering algo (adjacency matrix)
Can be non-local
Non-trivial to visualize

Ben Nachman, CMS SMP-J annual workshop 2018

Data Representations: Variable-Length Representations

arXiv:1810.05165 [hep-ph]

order-independent variable-length representations!

• Code with simple examples at 
https://energyflow.network/

• q / g tagging “out-of-the-box” from 
Anil at UIUC 

https://arxiv.org/abs/1810.05165
https://energyflow.network/
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Figure 4: Illustration of the deep convolutional neural network architecture.

3 CNN tagger

The jet images are used as input for a deep neural network classifier. This section describes the imple-
mentation of the neural network and characterizes the properties and performance of the classifier.

3.1 Network architecture and training

In the studies presented in this note we make use of a deep convolutional neural network (CNN) to build
a classifier of jet images. CNNs are a class of deep, feed-forward artificial neural networks based on
modular sets of weights (filters) that operate linearly on a small m ⇥ n patch of the input image. The
output of each filter is the dot-product between the weights and the pixel in the corresponding patch and
it is typically assigned the position of the centre of the patch. Each filter is then convolved with the
input image, by applying it to the whole image, a patch at a time, while moving the filter location across
the image with a given stride. As a result of this operation, a new output image is obtained for each
filter used. A non-linear activation function is typically applied to each pixel of the convolved image. A
down-sampling procedure, referred to as Max-pooling [44], is then performed. This procedure takes non-
overlapping patches of convolution outputs as input, and outputs the maximum value for each patch. The
sets of filters, the activations and the Max-pooling constitute the fundamental building block for CNNs.
The depth of the network is determined by the number of convolutions concatenated in the network.

The CNN architecture used in this note follows the example of Ref. [15] and consists of three iterations of
a convolutional layer with a Rectified Linear Unit (ReLU) activation [45] and paired with a Max-pooling
layer, all followed by a dense layer of 128 neurons with a ReLU activation. The output of the network
is a softmax function [46] of size two, predicting the probability for the quark jet and the gluon jet class,
respectively. The convolutional layers consist of 128, 128 and 64 filters, with filter sizes of 5 ⇥ 5, 5 ⇥ 5
and 3 ⇥ 3, respectively. The Max-pooling layers perform a 2 ⇥ 2 downsampling with a stride length of 2.
In order to prevent overfitting, dropout [46] is applied to each convolution and the final fully connected
layer with rate 0.3. In addition, a L2 regularization [46] with strength 10�8 is applied to all layers. A
coarse scan of the various hyper-parameters was performed prior to settling on the architecture described
above. An illustration of the architecture used is shown in Figure 4.
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q / g Discrimination in ATLAS

• 1st ATLAS result on ML imaging!
• CNN trained on EM towers + tracks 

outperforms classifiers based on       
# charged particles and jet width

Sept 18, 2019 University of Chicago 45
Quark versus Gluon Jet Tagging Using Jet Images with the ATLAS Detector, ATL-PHYS-PUB-2017-017
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Figure 2: The four corners show the average quark (upper) and gluon (lower) jet images, from true constituents,
both charged and neutral, (left) and reconstructed tracks (right); the four plots on the edges show the di↵erence
between the adjacent plots, for example the top plot shows the di↵erence between the average quark jet for stable
particles and reconstructed tracks. Quark-jets are more collimated than gluon ones, and track images show slightly
less central activity than in the true jet.
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truth particles                            reco tracks
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Figure 5: Gluon jet rejection as a function of the quark jet e�ciency using physics motivated observables and jet
image discriminants for jets with (a) 150 < pT < 200 GeV and (b) 400 < pT < 500 GeV. The LLH is a tagger
constructed from the optimal (likelihood) combination of ntrack and jet width.

Training is performed by minimizing the categorical crossentropy [46]. Minimization is performed with
the Adam optimizer [47] as implemented in Keras [48] with a learning rate of 0.0001 over 50 iterations.
Training is performed using a single NVidia Tesla K80 GPU with 224000 jet images, while 56000 jet
images are used for testing. A typical training requires about 1 hour. The network is retrained for each of
the two pT ranges considered.

The output of the network corresponding to the quark jet class is used as a discriminant (CNN tagger).
The discriminating power of the CNN tagger is compared with that of individual physically motivated
observables, the calorimeter jet width w and the number of tracks ntrack, and their combination with the
2D binned likelihood ratio (LLH) in Figure 5. Simple thresholds are applied to construct the ntrack and
jet width curves. Interestingly, the CNN tagger has a similar performance to the classic ntrack+jet width
tagger that has been extensively studied in the past for quark versus gluon jet tagging [10, 11]. The overall
performance improves with pT as does the importance of ntrack relative to jet width since the number of
particles inside quark and gluon jets increases with pT.

Given the promising performance suggested by Fig. 5, especially at lower pT and high e�ciency, the
remainder of this note is dedicated to a preliminary probe of where and how the CNN is able to distinguish
quark and gluon jets based on their radiation pattern.

9
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ML Imaging for Particle ID
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Q: can you name these celebrities?
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A: they don’t exist! Images generated by GANs
NVIDIA, “Progressive Growing of GANs for Improved Quality, Stability, and Variation,” ICLR 2018

https://research.nvidia.com/sites/default/files/pubs/2017-10_Progressive-Growing-of/karras2018iclr-paper.pdf


Calorimetry with Machine Learning
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LCD Calorimeter
• CLIC is a proposed CERN project for a linear accelerator of electrons and positrons to TeV 

energies (~ LHC for protons) 

• Not a real experiment yet, so we) can simulate data and make it public.  

• Simpler geometry than ATLAS…  

• The LCD calorimeter is an array of absorber material and silicon sensors  comprising the 
most granular calorimeter design available  

• Data is essentially a 3D image 

• So far several million Pi0, Elec, ChPi, Gamma. 10 to 510 GeV. Low energy and Jet 
samples planned. 

• ECAL (25x25x25) / HCAL (5x5x60) “window”. Aux info: Energy, …  

• First studies, π
0

 vs γ classification with various DNNs by summer students.  

• Code/results not collected… but should be easy to redo. 

• New version of dataset.  

• Some visualization code exists… Full running example in CaloDNN. 

• Many interesting problems: PID Classification, Energy Regression, Shower generative 
models. 

The LCD calorimeter
• CLIC is a CERN project for a linear 

accelerator of electrons and 
positrons to TeV energies (~ LHC for 
protons) 

• The LCD is the detector design 
associated to the project 

• The LCD calorimeter is an array of 
absorber material and silicon 
sensors 

• So far, the most granular (i.e., more 
“pixels”) calorimeter design 
available 

4

A long way to an optimal network architecture

19

• From this first exercise, 
we still have sizeable 
improvement margin 
ahead 

• Planning for an 
extended 
hyperparameter 
optimization on the 
CSCS cluster in Lugano 

• Starting to work on 
regressions in parallel, 
with CERN/Caltech 
Summer students 

Calorimetry in one slide
• Most particles hitting a dense material develop a 

shower of particles  

• In this stochastic process, they loose energy, which 
is transmitted to the material 

• Properly instrumenting the material, this energy can 
be collected as an electronic signal and converted 
into an energy measurement 

• The shape of the shower is related to the nature of 
the particle 

• calorimeter fragmented in cells to allow particle 
identification from shower shape 

• each cell is a volume in space associated to an 
energy deposit

Electromagnetic 
shower (e, γ)

Hadronic shower 
(π, Κ, p, n, ..)

3

Calorimetry in one slide
• Most particles hitting a dense material develop a 

shower of particles  

• In this stochastic process, they loose energy, which 
is transmitted to the material 

• Properly instrumenting the material, this energy can 
be collected as an electronic signal and converted 
into an energy measurement 

• The shape of the shower is related to the nature of 
the particle 

• calorimeter fragmented in cells to allow particle 
identification from shower shape 

• each cell is a volume in space associated to an 
energy deposit

Electromagnetic 
shower (e, γ)

Hadronic shower 
(π, Κ, p, n, ..)

3electromagnetic shower                 hadronic shower

Simulated energy showers produced by (left) electromagnetic particles (electrons or photons)
and (right) hadronic particles (charged or neutral pions) in the calorimeter of the Linear Collider
Detector.

shown in Figure 1, particles produced in LHC collisions traverse the detectors and deposit their
energy by “showering” in the calorimeters, which consist of a granular array of detecting elements
called “cells”. Identifying particles from their energy depositions in calorimeter cells bears a strong
resemblance to problems in machine vision, in which objects are reconstructed from intensity val-
ues in pixel arrays. This project focuses on applying deep neural nets to improve the identification
of particles produced in LHC collisions and recorded by the ATLAS detector. These improvements
will enhance the discovery reach for exotic new particles, such as those predicted by models of
supersymmetry or extra dimensions of spacetime. An observation of any such particle would trans-
form our understanding of the composition and fundamental laws of the universe.

6 Target Problem

A description of the specific research question(s) that the resources requested will be used
to answer and the scientific and societal impact of the proposed work. Include an explana-
tion of why a petascale resource of the leading-edge capability that Blue Waters represents
is necessary to address this research. If the proposal is for an Exploratory Allocation, ex-
plain why this is an exploratory project and what might be the outcome and next step if the
exploratory work succeeds.

The target problem of this project is to distinguish between different types of particles produced
in collisions at the LHC using deep nerual nets. Figure 1 shows a slice of the ATLAS detector
at the LHC. Two protons collide at the interaction point and produce particles that traverse the
detector. Six types of particles (electrons, muons, photons, charged and neutral hadrons, and
neutrinos) and their signatures in the electromagnetic and hadronic calorimeters are shown. For
illustration purposes, one particle of each type is shown, with each particle well-separated from the
others. In real LHC collisions, hundreds of particles are produced that overlap with one another,
and distinguishing between them is thus extremely challenging. This problem will grow steadily
worse in future data, since the LHC luminosity will increase, increasing the particle rates.

In early LHC data (2010), electrons, muons, and photons were selected from the large back-
grounds of charged and neutral hadronic particles using simple requirements on features such as

4

single particle showers in high-granularity 3D calorimeter

• Classification, regression, and fast simulation of single 
particles (e, !+, ", !0) with high-granularity calorimeter

• Full Geant-based simulation of CLIC LCD detector
• Investigate improvements from cell-based DNNs and 

CNNs w.r.t. feature-based DNNs and BDTs

Large Collider Detector (LCD) 
for proposed CLIC machine

to appear soon
Proceedings of the Deep Learning for Physical Sciences Workshop 
at Neural Information and Processing Systems (NeurIPS17)

[pdf]

https://dl4physicalsciences.github.io/
https://dl4physicalsciences.github.io/files/nips_dlps_2017_15.pdf
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Figure 1: Signal vs. background efficiency ROC curves for the (left) � vs. ⇡0 and (right) e vs. ⇡
classifier. The red dots mark the chosen BDT working point.

1000 model BDT hyperparameter scan yielded best performance with 400 estimators, maximum
depth of 5, and learning rate of 0.5.

The features we computed are commonly used in calorimetry to characterize the particle shower
shape and energy deposit. These features are: total energy deposited in ECAL, total number of hits
in ECAL, the ratio of energy in ECAL first layer over energy in second layer, the ratio of energy in
ECAL first layer over all ECAL energy, second through sixth moments in the detector local x, y, and
z of ECAL energy deposits, all equivalent features for HCAL, ratio of HCAL to ECAL energy, and
ratio of number of hits in HCAL to ECAL. In our studies, we found that the most powerful features
are the second x and y moments that measure the lateral shower width.

� vs. ⇡0 e vs. ⇡
Model acc. AUC �✏sig �Rbkg acc. AUC �✏sig �Rbkg

BDT 83.1% 89.8% - - 93.8% 98.0% - -
DNN (features) 82.8% 90.2% 0.9% 0.95 93.6% 98.0% -0.1% 0.95
DNN (cells) 87.2% 93.5% 9.4% 1.63 99.4% 99.9% 4.9% 151

Table 1: Performance parameters for BDT and DNN classifiers.

Figure 1 shows the ROC curves for the three classifiers and Table 1 quantifies the performance.
The areas under curve (AUC) and accuracies (acc.) for the cell-based DNNs are significantly
better than the feature-based DNNs and BDTs, which have similar performance. We also quantify
the achievable improvements in signal and background efficiency from the DNNs with respect
to the chosen “working point” on the BDT ROC curve indicated in Figure 1. For the � vs. ⇡0

(e vs. ⇡±) classifier, the cell-based DNN may be used to either increase the signal efficiency by
�✏sig = ✏DNN

sig � ✏BDT
sig = 9.4% (4.9%) for fixed background efficiency, or decrease the background

efficiency by a factor �Rbkg = ✏BDT
bkg /✏DNN

bkg = 1.6 (151) for fixed signal efficiency.

3 Regression: Energy Reconstruction

We trained a separate dedicated DNN to estimate particle energies from their calorimeter deposits.
This DNN is composed of two CNNs for ECAL and HCAL, followed by a flattening and concatenation
layer, with a final densely connected layer. The ECAL branch uses a 3-feature convolutional layer
with a 4⇥ 4⇥ 4 window and stride of 1 in each direction, followed by a 2⇥ 2⇥ 2 max pooling layer
with a stride of 2. The HCAL branch has a 10-feature layer with a 2⇥ 2⇥ 6 window and stride of 1,
followed by a 2⇥ 2⇥ 2 max pooling layer with a stride of 2. All convolutional layers have ReLU
activation. The output of both branches are linearized and merged, followed by a fully connected
layer with 1000 neurons. The final neuron has a linear activation function and the mean-squared error
(MSE) is used as the loss function. The data sample was split into 40,000 events for training, 10,000
events for validation, and 30,000 events for testing.

As a baseline measure of the energy, we use a simple bi-linear regression of the summed energy in
ECAL and HCAL to the true energy. Figure 2 compares the energy dependence of the calorimeter
resolution for each particle type and for both the neural net and the simple linear regression models.
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Figure 1: Signal vs. background efficiency ROC curves for the (left) � vs. ⇡0 and (right) e vs. ⇡
classifier. The red dots mark the chosen BDT working point.

1000 model BDT hyperparameter scan yielded best performance with 400 estimators, maximum
depth of 5, and learning rate of 0.5.
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shape and energy deposit. These features are: total energy deposited in ECAL, total number of hits
in ECAL, the ratio of energy in ECAL first layer over energy in second layer, the ratio of energy in
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BDT 83.1% 89.8% - - 93.8% 98.0% - -
DNN (features) 82.8% 90.2% 0.9% 0.95 93.6% 98.0% -0.1% 0.95
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Classification Results
• Train classifiers for ! vs. "0(➞ !!) and e vs. "±

– Apply filters to select hadrons that mimic signal: for "0 require #(!,!)<0.1, for "+ require H/E < 1/40

• Similar performance from DNN trained on features vs. BDT trained on features
• Significant improvement in performance from DNN trained on cells

caveats:
⦁ single particle 
showers at normal 
incidence only
⦁ no noise or PU
⦁ highly-granular calo
with uniform cell cizes

pT = 60 GeV pT = 60 GeV



• Significant improvements in energy resolution w.r.t. linear discriminant 
based on total ECAL and HCAL energies
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Regression Results

Figure 2: Energy resolution for
photons, electrons, neutral and
charged pions compared for the
CNN vs. linear model.

Simple Linear Model
Particle Type a b c

Photons 55.5 1.85 1245
Electrons 42.3 1.51 1037

Neutral pions 55.3 1.71 1222
Charged pions 442 25 11706

CNN Model
Particle Type a b c

Photons 18.3 0.75 131
Electrons 18.7 0.574 111

Neutral pions 19.3 0.45 231
Charged pions 114 1.02 893

Table 2: Calorimeter resolution parameters from
equation �(�E)

Etrue
= ap

Etrue
� b � c

Etrue
for the reso-

lution curves in Fig. 2.

better performance from the DNN as compared to the simple model, with resolution enhancement of
a factor of 3.5–7 at low energies and 2–4 at high energies, for all four particle types.

4 Generative Model: Particle Simulation

We use the sample of ECAL 3D energy arrays to demonstrate the ability to simulate particles at given
energies using GANs, as a proof of concept for a much larger plan to integrate a generic deep-learning
tool for fast simulation into the GeantV detector simulation library [19].

Both the GAN generator and discriminator models consist of four 3D convolution layers with leaky
ReLU activation functions. The number and sizes of filters were tuned to optimize the description of
the transverse and longitudinal shower shapes. The discriminator models take the calorimeter image
as input and produce two outputs: classification of the images as real or generated and regression
of the energy, in the manner described in the previous section. The generator takes as input the
desired particle energy and a latent noise vector initialized to a uniform probability distribution, and
outputs a 25⇥ 25⇥ 25 ECAL image. The results of GAN-simulated particles are shown in Fig 3, in
comparison with the particles generated via GEANT4 [7]. The GAN provides reasonable modeling
of the longitudinal shower width but further tuning is required to model the transverse shower width.

5 Conclusion and Future Work

This paper shows how deep learning techniques could outperform traditional and resource-consuming
techniques in tasks typical of physics experiments at particle colliders, such as particle identification,
energy measurement, and detector simulation. To continue this work, we will push forward particle
classification and energy regression into new areas, using multi-particle events with overlapping

Figure 3: Comparison of (left) transverse shower width and (right) longitudinal shower width for
GAN vs. Geant simulation of electrons with energies of 200-300 GeV.
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caveats:
⦁ single particle 
showers at normal 
incidence only
⦁ no noise or PU
⦁ highly-granular calo
with uniform cell cizes



Feature Modeling with GANs

• Validate GAN images by 
comparing features to Geant

Sept 18, 2019 University of Chicago 52

Paganini, de Oliveira, Nachman, CaloGAN for 
3D particle showers, PRD 97, 014021 (2018)

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.97.014021


More on Particle ID
• Study e vs. ! and e vs. "+ classification using Geant4 model inspired by 

ATLAS calorimeter
• Compare performance for various network architectures for combining 

info from 3 LAR layers with different granularities
• Densely-connected NN provides best performance
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Survey of Machine Learning Techniques for High Energy Electromagnetic 
Shower Classification, DLPS NIPS 2017 proceedings,
Michela Paganini, Luke de Oliveira and Benjamin Nachman

(a) ROC curves for e+ − γ classification (b) ROC curves for e+ − π+ classification

Figure 1: These performance plots illustrate the trade-off between maximizing the true positive ratio
for positron identification (on the x-axis) and maximizing the background rejection, the inverse of
the false positive ratio (on the y-axis). The five curves represent the performance of the following
classifiers: in blue, the three-stream DenseNet; in orange, the three-stream convolutional network;
in green, the three-stream locally-connected network; in red, the fully-connected network on shower
shapes; in purple, the fully-connected network on individual pixel intensities.

Table 2: Percentage relative increase or decrease in γ rejection at five different e+ efficiency working
points compared to the baseline fully-connected network trained on shower shape variables

e+ efficiency
60% 70% 80% 90% 99%

M
od

el

FCN on shower shapes - - - - -
FCN on unraveled pixels –0.8% –0.7% –1.0% –1.2% –2.0%
3-Stream Locally-Connected +3.0% +3.2% +4.2% +4.7% +4.1%
3-Stream Conv Net +4.7% +5.4% +5.9% +6.5% +5.5%
3-Stream DenseNet +7.3% +7.3% +7.7% +7.7% +6.4%

Table 3: Percentage relative increase or decrease in π+ rejection at five different e+ efficiency
working points compared to the baseline fully-connected network trained on shower shape variables

e+ efficiency
96% 97% 98% 99% 99.99%

M
od

el

FCN on shower shapes - - - - -
FCN on unraveled pixels –14.4% –7.6% +0.76% +0.0% –34.6%
3-Stream Locally-Connected +2.3% +4.8% +11.9% +22.3% –43.7%
3-Stream Conv Net +20.3% +31.0% +17.9% +32.4% –6.8%
3-Stream DenseNet +81.6% +107.5% +100.0% +90.1% +34.9%

performance differentials with respect to the shower shapes-based classifier are provided, for five
different e+ efficiency points, in Table 2. Similar results are provided in Table 3 for the e+ versus
π+ classification task.

4 Conclusion

We benchmarked a range of machine learning methods on a particle identification task using a pub-
licly available dataset. We highlighted unique properties of physical datasets that demand careful
architecture design considerations. With domain specific evaluation constraints in mind, emphasis

4



Software & Computational Challenges
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• Lots of available ML frameworks: TensorFlow/Keras (C++), PyTorch (python), etc.

• Training often performed with private python-based Keras+TensorFlow
⟶ few processes, single threads, little memory constraints, expendable jobs

• Production performed in custom C++ framework with ROOT-based I/O                       
⟶ many processes / threads, memory constraints, processes can’t die

• Deploying ML approaches at full scale with efficient multi-threading and memory 
usage is a key challenge

• MXNet: a flexible & scalable library for ML https://mxnet.apache.org/
– Acceleration libraries to fully exploit GPU and cloud computing capabilities

• Device placement, multi-GPU training, automatic differentiation, optimized predefined layers
– Speed-up of ~2-3× observed (for DeepAK8) [1]
– Need to tackle issues of thread safety

• Defining networks in format that is independent of ML framework is highly desirable

[1] see talk M. Verzetti, Fermilab ML for jets workshop, https://indico.cern.ch/event/745718/

https://mxnet.apache.org/
https://indico.cern.ch/event/745718/


Hyperparameter Optimization with HPCs
• Optimizing network architecture & hyperparameters is computationally expensive

– Different architectures (CNN, DNN, RNN, etc.), loss functions, gradient descent methods, etc.
– Tuning hyperparameters: number of layers, neurons per layer, learning & dropout rates, etc.

• Scan over permutations and compare performance metrics (AUC, accuracy, etc.)

• Highly parallelizable task ⟶ optimal for HPC / supercomputer!
– Good HEP use case for GPU-enabled machines

Sept 18, 2019 University of Chicago 55

• Blue Waters Supercomputer             
at National Center for 
Supercomputing Applications
– Largest Supercomputer on a 

university campus
– Cray XE/XK hybrid machine 

with 2.3 GHz AMD 6276 
Interlagos processors and 
NVIDIA GK110 (K20X) Kepler
accelerators

– 4228 GPU-enabled XK nodes 
with 25 TB memory

Calorimetry with Deep Learning: Particle Classification, Energy Regression, and Simulation for 
High-Energy Physics, Belayneh, Farbin, BH, Khattak, Liu, Olivito, Pacela, Pierini, Schwing, 
Spiropulu, Vallecorsa, Vlimant, Wei, Zhang, to appear soon

DNN hyperparameter scan
for γ vs. π0 ⟶ γγ classifier



An Affordable PC with a Powerful GPU

Sept 18, 2019 University of Chicago 56

PC with GeForce 2080 Ti GPU for $2,000
https://pcpartpicker.com/user/anilr2/saved/HYPYTW

https://pcpartpicker.com/user/anilr2/saved/HYPYTW


• Lots of possible applications:

• Jets
– Jet substructure (W/top-tagging)
– Quark vs. gluon discrimination
– b/c-tagging
– Measuring ET, !, "
– Pileup mitigation

• Leptons
– Electron classification and ET, !, "
– Tau classification and ET, !, "

• Photons
– Photon classification and ET, !, "

• MET
– MET measurement

ML Imaging for Object Classification & Regression

Sept 18, 2019 University of Chicago 57

Jet-Images: Computer Vision Inspired Techniques for Jet Tagging, JHEP 02 (2015) 118
Jet Images – Deep Learning Edition, JHEP07 (2016) 069
Jet Substructure Classification in High-Energy Physics with Deep Neural Networks, PRD 93 (2016) 094034
Jet Constituents for Deep Neural Network Based Top Quark Tagging, arXiv:1704.02124
Parton Shower Uncertainties in Jet Substructure Analyses with DNNs, PRD 95, 014018 (2017)
How Much Information is in a Jet? JHEP 06, (2017) 073
Novel Jet Observables from Machine Learning, arXiv:1710.01305 [hep-ph]
Energy flow polynomials: A complete linear basis for jet substructure, arXiv:1712.07124 [hep-ph]
Jet Substructure at the LHC: A Review of Recent Advances in Theory and Machine Learning, arXiv:1709.04464 [hep-ph]
Deep-learning Top Taggers or The End of QCD? JHEP 05 (2017) 006
New Developments for Jet Substructure Reconstruction in CMS, CMS-DP-2017-027
ML Techniques for the Identification of Hadronic W Bosons and Top Quarks in ATLAS, ATLAS-PHYS-PUB-2017-004

Deep learning in color: towards automated quark/gluon jet discrimination, JHEP 01 (2016) 110
Quark versus Gluon Jet Tagging Using Jet Images with the ATLAS Detector, ATL-PHYS-PUB-2017-017

Pileup Mitigation with Machine Learning (PUMML), JHEP 12 (2017) 051

Calorimetry with Deep Learning: Particle Classification, Energy Regression, and Simulation for HEP, DLPS NIPS 2017 proceedings
Survey of ML Techniques for High Energy Electromagnetic Shower Classification, DLPS NIPS 2017 proceedings

Nachmann, ACAT 2017



• asd
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Neural Networks in a Nutshell

• Multiple layers of nodes (“neurons”) interconnected with variable weights
– Train weights Wij by minimizing loss function, using backpropagation and steepest descent

• Universal Approximation Theorem: NNs can approximate any continuous function [1]

Sept 18, 2019 University of Chicago 59

inputs can be…

features
(nhits, Etot, etc.)

or

low-level data
(tracks, hits / 
clusters, particle 
flow candidates
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https://link.springer.com/article/10.1007%2FBF02551274
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Figure 14: W
0 ! WZ (top) and QCD (bottom) average jet-images in three small windows of ⌧21:

[0.19, 0.21] (left), [0.39, 0.41] (middle), and [0.59, 0.61] (right). In all cases, jet mass is restricted to
be between 79 GeV and 81 GeV and the jet pT is required to be in the interval [250,260] GeV.
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Figure 15: The average di↵erence between W
0 ! WZ jet-images in three small windows of ⌧21:

[0.19, 0.21] (left), [0.39, 0.41] (middle), and [0.59, 0.61] (right). In all cases, jet mass is restricted to
be between 79 GeV and 81 GeV and the jet pT is required to be in the interval [250,260] GeV. The
red colors are more signal-like and the blue is more background-like.
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Figure 14: W
0 ! WZ (top) and QCD (bottom) average jet-images in three small windows of ⌧21:

[0.19, 0.21] (left), [0.39, 0.41] (middle), and [0.59, 0.61] (right). In all cases, jet mass is restricted to
be between 79 GeV and 81 GeV and the jet pT is required to be in the interval [250,260] GeV.
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Figure 15: The average di↵erence between W
0 ! WZ jet-images in three small windows of ⌧21:

[0.19, 0.21] (left), [0.39, 0.41] (middle), and [0.59, 0.61] (right). In all cases, jet mass is restricted to
be between 79 GeV and 81 GeV and the jet pT is required to be in the interval [250,260] GeV. The
red colors are more signal-like and the blue is more background-like.

– 21 –

Example of Jet Classification: W-tagging

• Seminal work demonstrated W➞jj
tagging using jet images [1]

• DNN outperforms feature-based 
classifiers ➞ there is additional info in 
the cells (beyond mass, !21, "R)

[1] de Oliveira, Kagan, Mackey, Nachman, Schwartzman, 
“Jet-images – deep learning edition,” JHEP 07:069, 2016

DNNs
DNNs

feature-based 
classifiers

https://link.springer.com/article/10.1007%2FJHEP07%282016%29069


Jets: Selected Results

• DNNs and CNNs tend to outperform feature-based classifiers

• Caveats*: parton-level or fast simulation ➞ no detector resolution, noise, PU, 
dead cells, material upstream of calorimeter, etc

Sept 18, 2019 University of Chicago 61

Pileup Mitigation deep learning in color*: 
quark/gluon jet discrimination

top tagging
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Figure 8. Performance of the neural network tagger compared to the QCD-based approaches
SoftDrop plus N -subjettiness and including the HEPTopTagger variables.

where mfat is the un-groomed mass of the fat jet. This is similar to standard experimental

approaches for our transverse momentum range pT,fat = 350 ... 400 GeV. In addition,

we include the HEPTopTagger2 information from filtering combined with a mass drop

criterion,

{ msd,mfat,mrec, frec,�Ropt, ⌧2, ⌧3, ⌧
sd
2 , ⌧ sd3 } (MotherOfTaggers) .

(3.5)

In figure 8 we compare these two QCD-based approaches with our best neural networks.

Firstly, we see that both QCD-based BDT analyses and the two neural network setups are

close in performance. Indeed, adding HEPTopTagger information slightly improves

the SoftDrop+N -subjettiness setup, reflecting the fact that our transverse momentum

range is close to the low-boost scenario where one should rely on the better-performing

HEPTopTagger. Second, we see that the di↵erence between the two pre-processing

scenarios is in the same range as the di↵erence between the di↵erent approaches. Running

the DeepTop framework over signal samples with a 2-prong W 0 decay to two jets with

mW 0 = mt and over signal samples with a shifted value of mt we have confirmed that the

neural network setup learns both, the number of decay subjets and the mass scale.

Following up on on the observation that the neural network and the QCD-based taggers

show similar performance in tagging a boosted top decay inside a fat jet, we can check what

kind of information is used in this distinction.

Both for the DNN and for the MotherOfTaggers BDT output we can study signal-

like learned patterns in actual signal events by cutting on the output label y corresponding

to the 30% most signal like events shown on the right of figure 3. Similarly, we can

require the 30% most background like events to test if the background patterns are learned

correctly. In addition, we can compare the kinematic distributions in both cases to the

– 14 –

red= transverse momenta of charged particles
green= the transverse momenta of neutral particles
blue= charged particle multiplicity

JHEP 12 (2017) 05

Figure 5: (top) ROC and (bottom) SIC curves of the FLD and the deep convolutional

network trained on (left) 200GeV and (right) 1000GeV Pythia jet images with and without

color compared to baseline jet observables and a BDT of the five jet observables.

e�ciency at 50% quark jet classification e�ciency for each of the jet variables and the CNN

are listed in Table 1. To combine the jet variables into more sophisticated discriminants, a

boosted decision tree (BDT) is implemented with scikit-learn. The convolutional network

outperforms the traditional variables and matches or exceeds the performance of the BDT of

all of the jet variables. The performance of the networks trained on images with and without

color is shown in Figure 6.

5.1 Colored Jet Images

The benchmarks in the previous section were compared to the jet images with and without

color, where the three color channels correspond to separating out the charge and multiplicity

information as described in Section 3.3. Figure 6 shows the SIC curves of the neural network

performances with and without color on Pythia jet images. For the 100GeV and 200GeV

images, only small changes in the network performance were observed by adding in color of

this form. For the 500GeV and 1000GeV jet images, performance increases were consistently
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JHEP 01 (2016) 110

Deep CNN (color)

Deep CNN (grayscale)

BDT of 5 jet obs.

JHEP 05 (2017) 006

*DELPHES3, no PU*parton-level*parton-level


