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some front matter: 

- I am not a mathematician or a category theorist 
but an interested (and fallible) physicist! 
I am certainly still learning this stuff. ;-) 

- I also don't have a lot of experience explaining the 
concepts here: please ask questions 
as we go along if you get at all lost! 

- it may seem like a whole lot of mumbo-jumbo to begin with, 
but I hope to convince you of the benefits thinking this way. 

- I cannot go into details and will do a lot of hand waving, 
but please let me know if I've piqued your interest! 

- also apologies for all the words, but I thought people may want 
to go back and read some of the explanations.



!3

data analysis is about proving a relationship between 
observed data and some parameters we wish to extract
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data analysis is about proving a relationship between 
observed data and some parameters we wish to extract

this is one way of thinking about human observation 
and modeling of our surroundings
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this relationship can actually be extremely complicated... 

... in practice it's usually made up of many, many "sub"-relationships
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this relationship can actually be extremely complicated... 

... in practice it's usually made up of many, many "sub"-relationships

our brains can't really handle that many relationships at once 

"divide-and-conquer" is almost always our go-to strategy 
for proving complex relationships: 

breaking down then re-composing the problem is key!
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category theory is (in my own words and opinion) an attempt 
to reason formally about and study 

abstract relationships 
(throwing away unnecessary details) 

how these relationships compose 

and the structure that results 
from these relationships and their composition

ancestry tree

prime factorization
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what is a category? 

a collection of objects A, B, C, ... 

and a collection of morphisms (aka relationships) connecting objects f, g, h, ... 

morphisms between compatible objects compose: 

f . g, meaning "f after g" 

their composition must also be a morphism in the category, 
and composition is associative 

the identity morphism exists for each object 
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what is a category? 

a collection of objects A, B, C, ... 

and a collection of morphisms (aka relationships) connecting objects f, g, h, ... 

morphisms between compatible objects compose: 

f . g, meaning "f after g" 

their composition must also be a morphism in the category, 
and composition is associative 

the identity morphism exists for each object 

notice the similarity to a group: 

a set with an associative binary operation on its members such that 
the composition of two members is also a member 
and with an identity element 

but missing inverses! (i.e. a monoid)
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going back to the previous example: my family members can be cast as objects 
in a category, where morphisms represent ancestry 

ancestry composes: an ancestor of my ancestor is also my ancestor 

the same is true of prime factorization 

what's clear is that these two categories have the same structure, 
neglecting the detailed meaning of the arrows and object labels
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why is this interesting? 

when we perform physics analyses, 
we are attempting to prove a very complicated relationship between 
e.g. energy deposits in the detector and some physical parameter. 

the translation of this process to CPU commands tends to be fairly ad-hoc. 

by breaking our proof down into small, understandable, composable chunks, 
we can make this process much more precise 

and gain important insights in so doing!
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a procedure that can be represented as a graph like this one (a string diagram) 
can be realized in a class of category with a few constraints on its structure, 

called cartesian closed categories. 

there is a famous correspondence 
("Curry–Howard–Lambek correspondence") between 

cartesian closed categories <=> intuitionist logic <=> typed lambda calculus
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cartesian closed categories <=> intuitionist logic <=> typed lambda calculus 

the Curry–Howard–Lambek correspondence shows that diagrams above can be 
translated to and evaluated as computer programs where 

1) objects are labeled sets of values (types) 
2) morphisms are functions between types 

in other words, if we can draw a diagram like above describing a physical process, 
and if we can provide an implementation of each morphism, 

then we can translate such diagrams into a suitable programming language!
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we should not forget that, because everything here is very carefully composable, 
physics processes that can be represented this way also compose. 

i.e. this particular process may be embedded in a much larger one, 
or morphisms in this particular process may actually be compositions of 

more "fundamental" morphisms. 

however, we can reason locally knowing that we can always insert our local 
understanding into the bigger picture!
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thankfully, others have already 
done the hard work: 

translating this onto the CPU 

they even provide a nice, visual 
syntax!

translating to haskell syntax:
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remember: 
everything here composes

translating to haskell syntax:
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so far we've just been working with "simple" functions on sets as morphisms 

i.e. you give me an event 
-> I know how to extract the electron pt 

-> I know how to extract the jet pt 
-> I can sum these two to get my final observable 

this is already powerful, but we can take things to another level.
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when I see a process like this many things pop into my head: 

what assumptions are built into each relationship? 

are there uncertainties related to each arrow? 

how would I predict such an observable with e.g. MC? 

well... are "simple" functions the only morphisms we know how to compose?
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are "simple" functions the only morphisms we know how to compose? 

no! 

let's consider efficiency corrections ("scale factors", "SF") for reconstructing electrons 

now instead of simply being a function from an event to the pT of an electron 

Event -> pT 

our electron pT function returns an additional context 

Event -> (SF, pT) 

all we need to figure out is how to compose morphisms like this...

f :: a -> (SF, b) 
g :: b -> (SF, c) 

(g . f) :: a -> (SF, c)
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but we know how to do this! 

- run the function f on the input a, resulting in a SF and b 
- plug the resulting b into the function g, resulting in another SF and c 
- multiply the SFs returned by f and g 
- and return the combined SF along with the value c 

strangely (or not?) this is a well-established structure in the haskell world: 
if you have functions returning some additional information for which 

there is a well-defined multiplication (i.e. a monoid), 
haskell already knows how to compose them. 

my morphism source code requires no changes; 
the elPt and jetPt morphisms are free to return SF-decorated values, 

and a SF-decorated pt sum will be returned!

f :: a -> (SF, b) 
g :: b -> (SF, c) 

(g . f) :: a -> (SF, c)
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but we know how to do this! 

- run the function f on the input a, resulting in a SF and b 
- plug the resulting b into the function g, resulting in another SF and c 
- multiply the SFs returned by f and g 
- and return the combined SF along with the value c 

strangely (or not?) this is a well-established structure in the haskell world: 
if you have functions returning some additional information for which 

there is a well-defined multiplication (i.e. a monoid), 
there is an obvious way to compose these functions. 

my morphism source code requires no changes; 
the elPt and jetPt morphisms are free to return SF-decorated values, 

and a SF-decorated pt sum will be returned!
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this type of structure is called a "Writer" in the haskell community 
because each morphism is allowed to "write" some additional information to a 

"generalized log" 

in this case the "log" was accumulated multiplicative scale factors, 
but it's easy to see that this is powerful in a more general way... 

for instance, imagine one wants to keep track of 
the set of relevant assumptions that were applied for a particular event, e.g. 

"1 TeV electron found; assume SFs from Z->ee extrapolate to this range" 
-or- 

"assume mJJ and jet substructure are uncorrelated" 

it's straightforward to collect these and to validate they were consistent for each event 
passing through analysis code. 

anything that has some form of "multiplication" can be accumulated over the analysis! 
job configuration, conditions information, application of cuts, etc.
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the Writer structure is not at all unique! 

there are well-established constraints on structures that 
yield correctly-composing morphisms. 

probability distributions 
systematic variations/nuisance-parameter dependences 

cut requirements 
data-store accesses 

data streams 
... 

are just a few examples (off the top of my head).
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in my physics analysis, I use a hybrid structure that keeps track of 
cut requirements, scale factors, and systematic variations: 

each sub-morphism of my analysis is allowed to 
(1) pass or reject an object due to cut requirements, 
(2) apply scale factors and 
(3) add systematic variations to the computation. 

these effects all compose into one big morphism between an event 
and the set of observables I extract from it. 

I would even go so far as to say this is the "most correct" way to 
encode corrections, uncertainties, etc.
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I haven't said anything yet about histogramming... 

folds (or "reduce"s, of which histograms are a subset) are certainly composable! 

my (current) preferred way of encoding folds is through Mealy machines, 
which are basically functions 

Mealy a b = a -> (b, Mealy a b) 

so, you give me something of type a and 
I'll give you a b back in addition to a brand new machine! 

for histogramming, the a type is whatever we have as an input to the histogram, and the 
b is the state of the histogram after the filling has occurred. 

the "new machine" has already taken the previous fill into account and is ready to 
perform the next fill, so in this sense the machine is a generalized accumulator. 

when you are done folding over your dataset, just take the final returned histogram and 
ignore the new machine. 

(or keep it if you want to be able to continue filling at some future point)
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the main point being that Mealy machines are 
also morphisms in a cartesian closed category! 

i.e. I can "compile" the morphisms of any of my analysis diagrams into Mealy machines 
and reuse exactly the same code I had before to go from an event to e.g. sumpt.



!28

I can attach a histogram filler (or three) to my previous morphism and voila! 
every time an event comes in, I get a new histogram with the fill included 

as well as a brand new mealy machine that will gobble up the next event 

i.e. event -> (histograms, Mealy event histograms) 

it's also possible to thread all the effects (e.g. systematic variations) through Mealy 
machines, so we have not lost any generality at all.
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a few words about haskell... 

traditional programming languages (fortran, C(++), even python) 
I believe started from the CPU hardware and its limitations 

and evolved layers of abstraction to make it easier 
for us to write and understand commands. 

haskell (I would claim) is in a class of languages that began with a set 
of desired mathematical constructs, and a lot of effort was invested into 

translating these into calculations that can be run on a CPU. 

haskellers often speak in terms of the concrete category Hask, 
which, with a few caveats, has types as objects and functions as morphisms. 

the compiler (GHC) explicitly checks that your morphism composition is allowed.  

functions in haskell are pure unless they are carefully annotated, 
meaning there are no global variables or side effects: 

if I give the same input to a function a million times, I will always get the same result. 

the language has an extremely complete set of available libraries, package 
management, etc; the ideas presented here are very widespread in the community.
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fortran, c, c++, python, java, etc

haskell, etc

over the last several years there has been a significant 
migration of ideas from haskell (and similar) into both 

old and new languages. 

personally I think many of these constructs will be 
considered "core" to languages in the (distant) future.
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however! 

I'd be lying if I said it was all milk and honey 

there are a number of drawbacks to a language like haskell: 

- the learning curve is extremely steep, especially if you're coming from a more 
traditional programming language. 

- the language feels extremely restrictive to start, because correctness rules are 
brutally enforced on the programmer. this can be difficult to come to terms with. 

- evaluation is non-strict; i.e. functions are only evaluated when the values they 
return are needed; this can be difficult to reason about. 

- speed: in fact haskell is extremely fast (it's compiled), although comparisons to 
hand-tuned code like BLAS/LAPACK etc is probably not totally fair. 

- however, because the language is very restrictive in some senses, the compiler is 
able to perform some substantial improvements behind the scenes. 

in many cases computations are automatically parallelized! 

- probably many more...



!32

I would not advocate whole-sale migration to a language like haskell for many of the 
reasons outlined above. 

that said, to me it's clear that we should be learning from the concepts and ideas 
developed by that and similar communities. 

maybe we can begin to integrate such ideas in the not-too-distant future without 
entirely disrupting our code ecosystem. 

I still feel there is a lot to be gained from having a very abstract representation of 
processes that can be cast in many different lights.
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to summarize: 

ideally source code should be a faithful, useful representation of the mathematical 
process of physics analysis. 

there should be a one-to-one correspondence between the process and the 
implementation---I hope we can move more in this direction! 

thinking compositionally about physics analysis (and mathematical processes more 
generally) comes with enormous benefits. 

adding abstraction, purity, and composability to our code also makes many other 
interesting (useful!) things possible: 

probabilistic programming 
syntax tree construction, manipulation, and storing 

automatic differentiation 
etc 

the haskell community has already made huge efforts to make these ideas concretely 
possible, so we don't have to start from scratch by any means. 

and beyond programming, I think we can learn a lot from casting a more formal light on 
how we interpret our data!
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useful references 

categorical rosetta stone (Baez): 
https://arxiv.org/pdf/0903.0340.pdf 

category theory for programmers: 
https://bartoszmilewski.com/2014/10/28/category-theory-for-programmers-the-preface/

https://arxiv.org/pdf/0903.0340.pdf
https://bartoszmilewski.com/2014/10/28/category-theory-for-programmers-the-preface/

