A new Heavy-Ion Masterclass

J/ψ Measurement with ALICE

Ralf Averbeck
GSI Helmholtzzentrum für Schwerionenforschung
Darmstadt, Germany

International Masterclasses
Steering Group Meeting

ALICE

heavy-ion experiment at the LHC

→ investigation of quark-gluon plasma properties

central Pb-Pb collision with total collision energy above 1 PeV:
 ~3200 primary, charged particle tracks in |η|<0.9

ALICE Masterclasses

- looking for strange particles in ALICE → Despina Hatzifotiadou
 - is strangeness production different in pp and Pb-Pb collisions due to the presence of a QGP in the latter?

- → not discussed further today
- measurement of the nuclear suppression factor R_{AA} for charged particles
 - can we witness quarks interacting strongly and, thus, loosing energy when propagating through a QGP?
 - → current Masterclass workhorse at GSI

Nuclear modification factor R

- - ratio of transverse-momentum distributions of charged particles in Pb-Pb and pp collisions, taking into account the collision geometry
 - R_{AA}<1 implies jet suppression in the quark-gluon plasma
- measurement
 - necessary concepts: measurement of
 - charged particle momentum
 - collision centrality
 - event-display based visual analysis
 → R_{AA} simply via counting of tracks
 - ROOT based large scale analysis
 → R_{AA} as a function of momentum
 and collision centrality
 → students discover jet suppression!

R_{AA} measurement: pros & cons

advantages

- genuine heavy-ion physics observable
- doesn't need any difficult concepts (only tracking and centrality)
- teaches the value of collaborative work

disadvantages

- large-scale analysis difficult without programming experience
- challenging to complete the full measurement in time
- no use of particle identification techniques

measures

- various versions (all work well for their purpose)
 - "full", "copy and paste", "demonstration" version

→ development of a new ALICE Masterclass on J/ψ

- main emphasis: particle (electron) identification
- other necessary concepts: decay, invariant mass, combinatorial background
- no programming skills needed

J/w measurement with ALICE

J/ψ

- bound state of charm quark and antiquark, m ~ 3.1 GeV/c²
- discovered in 1974 at BNL and SLAC ("November revolution")
- usually reconstructed via e⁺e⁻ or μ⁺μ⁻ decay (BR ~ 6%)

Nobel prize for S. Ting and B. Richter (1976) Rev. Mod. Phys. 49 (1977) 235 & 251

in ALICE

- J/ψ measured in dimuon and dielectron channel
- electron identification via specific energy loss dE/dx measured in the ALICE Time Projection Chamber (calorimetry and time-of-flight ignored for simplicity)
- Masterclass package mainly developed by <u>Steffen Weber</u> (WWU Münster)

ALICE: dE/dx in the TPC

 dE/dx performance as published by the PDG vs. Masterclass version

J/ψ Masterclass: the GUI

inspired from R_{AA} Masterclass

workflow

- load chargedparticle tracks
- fill PID histogram
- define PID selection
- fill inv. mass histograms
- extract J/ψ yield

with a bit of patience the electrons emerge

1 pp collision

with a bit of patience the electrons emerge

with a bit of patience the electrons emerge

with a bit of patience the electrons emerge

 with a bit of patience the electrons emerge and can be selected

J/ψ Masterclass: m_{ee}in pp

without electron identification

observations

- no signal visible on top of combinatorial background (CB)
- like-sign pairs: a good (not perfect) estimate for CB

J/ψ Masterclass: m_{ee}in pp

with electron identification

Observations

- signal emerges and can be quantified
 - yield
 - S/B
 - significance

J/ψ Masterclass: pp vs. p-Pb

combinatorial background grows with multiplicity

- signal extraction much more difficult
- no good idea yet on how to add Pb-Pb collisions

J/ψ Masterclass: pp vs. p-Pb

combinatorial background grows with multiplicity

- signal extraction much more difficult
- going to Pb-Pb collisions to make connection with heavy-ion physics
 - being discussed
 - not with signal extraction
 - not with large-scale analysis a la R_{AA} measurement

J/ψ Masterclass: next steps

- signal extraction part is ready
- → will be tested in a pilot run on June 7, 2019
 - physics class from Eleonorenschule, Darmstadt
 - 6 out of 22 students have experience with the ALICE R_{AA} Masterclass!

- QGP connection is being explored ...
- want to try (manual available in German only for the moment)?
 - → https://github.com/zwound40/JpsiMasterclass.git