23 May 2019

IPPOG Steering Group Meeting

Particle Therapy MasterClass

Overview & Pilot Report

Niklas Wahl
Division of Medical Physics in Radiation Oncology
German Cancer Research Center – DKFZ

MasterClass on Particle Therapy – Why?

- Show students that particle physics is not only fundamental research, but can also be applied
 - → fundamental research spawns "real life" applications
- Particle therapy has left the experimental stage and is clinically established

- Cancer is a widespread disease (2012: 14e6 new cases, 50% mortality 10y)
 - → almost everybody will be somehow affected (family, friends, etc.)

Pilot MasterClass on Particle Therapy at DKFZ, April 5th – Schedule

Participants: 17 students (age 16-18) from the Heidelberger Life Science Lab

- 9:15 11:30: Lectures on physics background & treatment planning
- 11:30 12:15: Lunch
- 12:30 13:30: Visit (in Heidelberg: HIT)

- 14:00 16:00: Hands-on Particle Treatment Planning matRad
- 16:00 16:30: Internal discussion of results
- 16:30 17:00: Video conference (with GSI & CERN)

Introductory Lectures

1st lecture – From particle physics to radiation dose

- What is cancer? How can we treat it? Why radiation therapy?
- What is radiation dose?
 - → Interactions of particles with matter
 - → different types of radiation (photons vs. charged particles)
- How do we produce radiation dose clinically?
 - → accelerators (LINACs, synchrotrons, cyclotrons?)

(mm)

Introductory Lectures

2nd lecture – **Treatment Planning**

- How do we see inside the body? → Imaging (CT)
- How do we find the tumor? → Segmentation
- How do we plan the treatment?
 - How do we calculate dose?
 - How do we optimize dose?
 - How do we evaluate the treatment plan?

Visit – Heidelberg Ion Therapy Center (HIT)

Measurement: Hands-On Treatment Planning

- Based on our Matlab open source toolkit matRad
 - → simplified MasterClass version compiled as standalone software
 - 1. Treatment planning with photons
 - 2. Treatment planning with protons & carbon ions
 - → show advantage of particle treatment plans
 - 3. Difficulties of particle therapy planning
 - biological treatment planning
 - impact of uncertainties

www.matrad.org

matRad - an open-source toolkit for dose calculation and optimization

3D dose calculation

Photons: Singular value decomposed pencil beam algorithm

Protons: Pencil beam algorithm

Carbon ions: Pencil beam algorithm & RBE computation

Dose optimization

Photons: Physical dose optimization

Protons: Fixed RBE (1.1) dose optimization

Carbon ions: Variable RBE dose optimization

• GUI for visualization and analysis and standalone

Base data

Example patient data (CORT data set) & DICOM Import
Physical & biological base data for a photon LINAC, a proton machine,
and a carbon ion machine

Acknowledgements

Development team @ dkfz

Niklas Wahl

Lucas Burigo

Oliver Jäkel

Oliver Schrenk

Ahmad Neishabouri

Amit Ben Antony Bennan

Noa Homolka

Paul Meder

Forschungsgemeinschaft

DFG

Deutsche

BA 2279/3-1

HIT cooperation

Benjamin Ackermann

Swantje Ecker

Malte Ellerbrock

Andrea Mairani

Katia Parodi

Thomas Tessonnier

Alumni

Mark Bangert

Hans-Peter Wieser

Eduardo Cisternas

Cindy Herman

Thomas Klinge

Verena Böswald

Henning Mescher

Alexander Stadler

Guiseppe Pezzano

Lucas-Raphael Müller

Hubert Gabrys

Silke Ulrich

Advisors

Martin Siggel
Peter Ziegenhein

Particle Therapy MasterClass – Survey Results

How much did you enjoy the masterclass? (1 to 5):

Average: **4.8** ± **0.4**

How easy or difficult was the masterclass? (1 to 5):

Average: 2.6 ± 0.5

- Favorite parts:
 - 1. Tour
 - 2. Hands-On Treatment Planning with matRad
 - 3. Introductory Lectures

