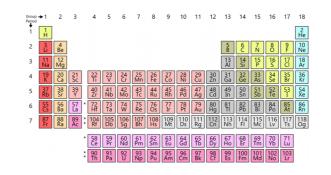
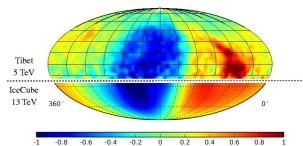
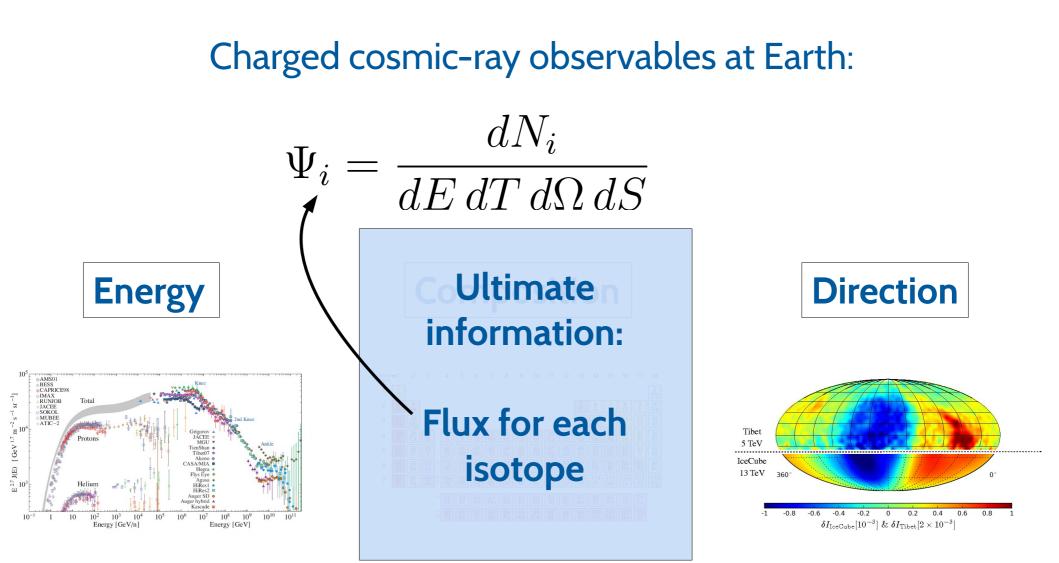
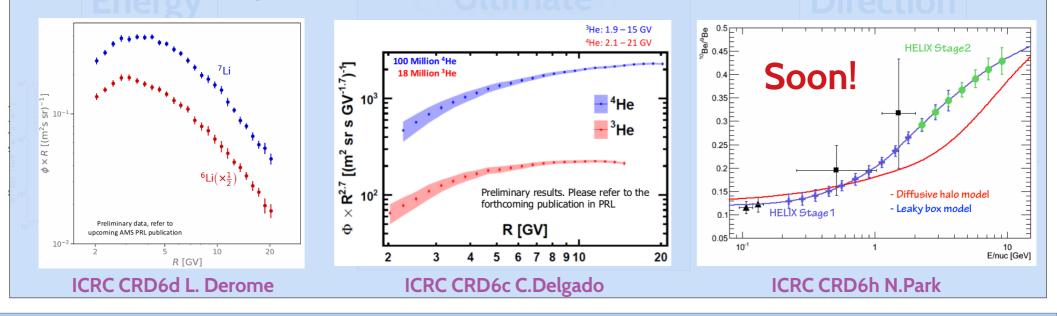

Charged cosmic-ray observables at Earth:


$$\Psi_i = \frac{dN_i}{dE \, dT \, d\Omega \, dS}$$

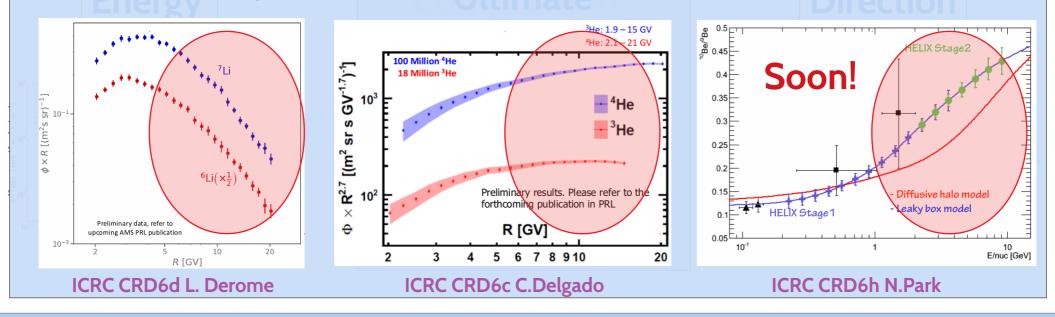




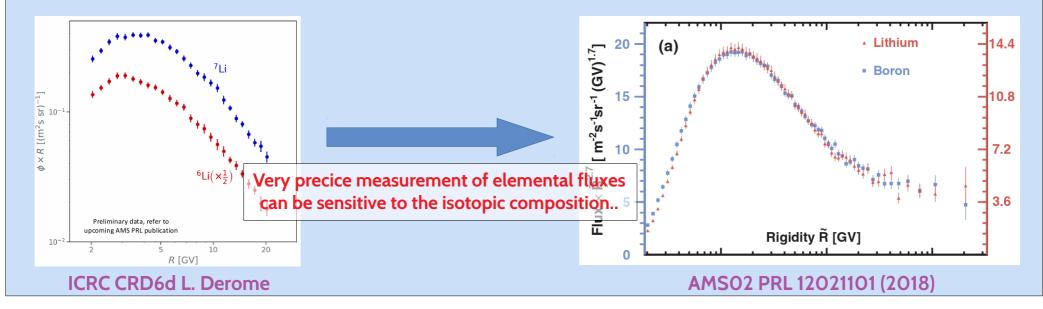

 $\delta I_{\rm IceCube}[10^{-3}]$ & $\delta I_{\rm Tibet}[2 \times 10^{-3}]$

Charged cosmic-ray observables at Earth:

$$\Psi_i = \frac{dN_i}{dE \, dT \, d\Omega \, dS}$$


That is no longer a dream since this summer...

Charged cosmic-ray observables at Earth:


$$\Psi_i = \frac{dN_i}{dE \, dT \, dQ \, dS}$$

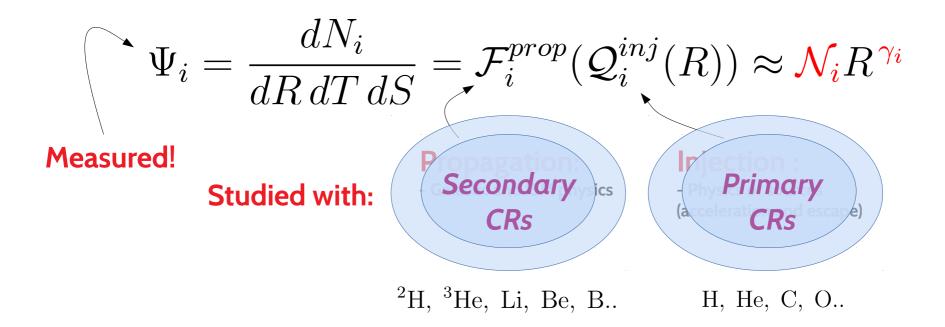
That is no longer a dream since this summer... at least for these energies!

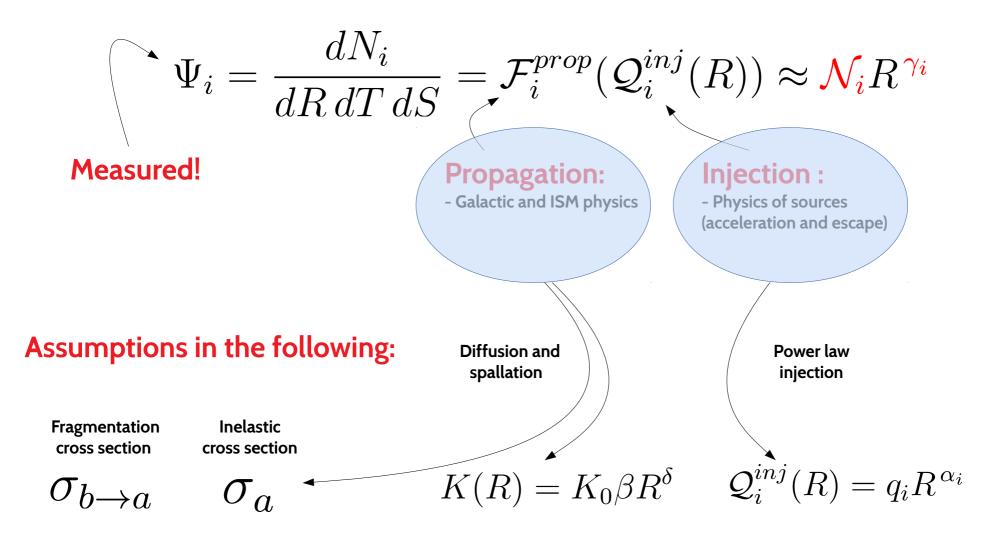
Charged cosmic-ray observables at Earth: $\Psi_i = \frac{dN_i}{dE \, dT \, d\Omega \, dS}$

That is no longer a dream since this summer... at least for these energies!

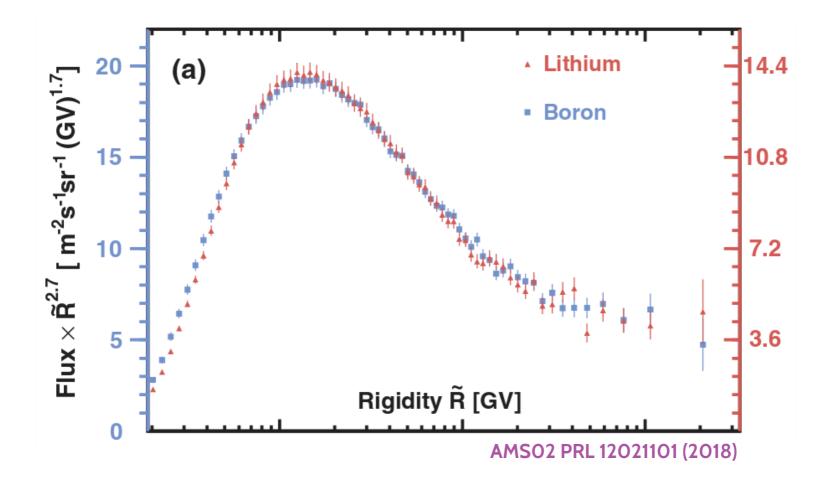
Charged cosmic-ray observables at Earth: $\Psi_i = \frac{dN_i}{dE \, dT \, d\Omega \, dS}$

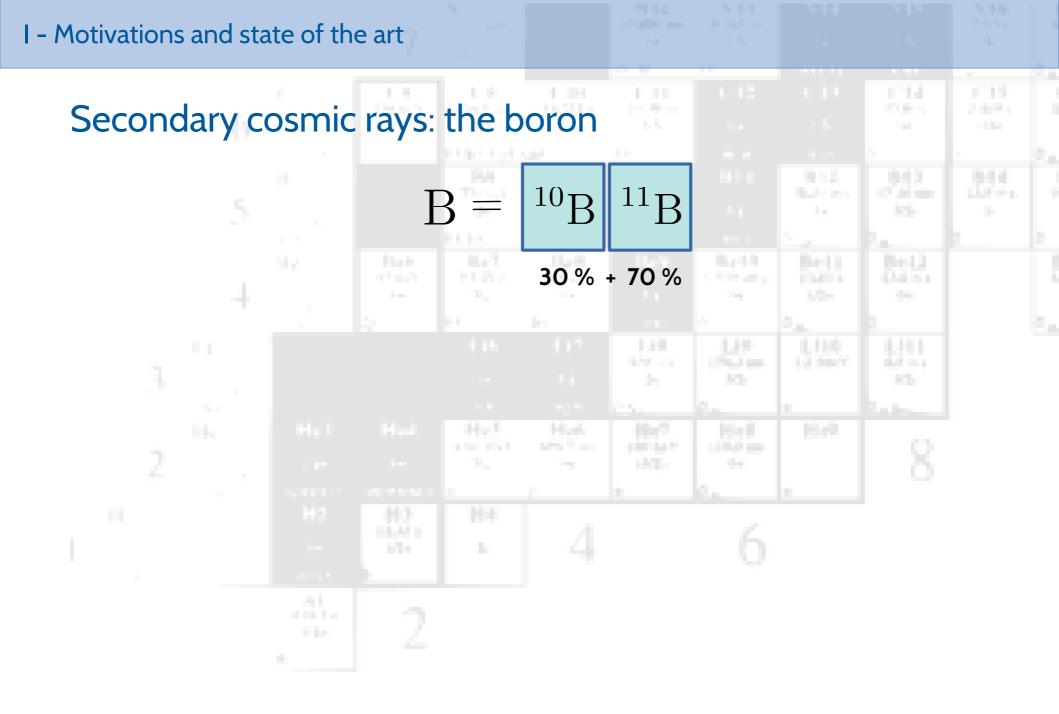
That is no longer a dream since this summer... at least for these energies!

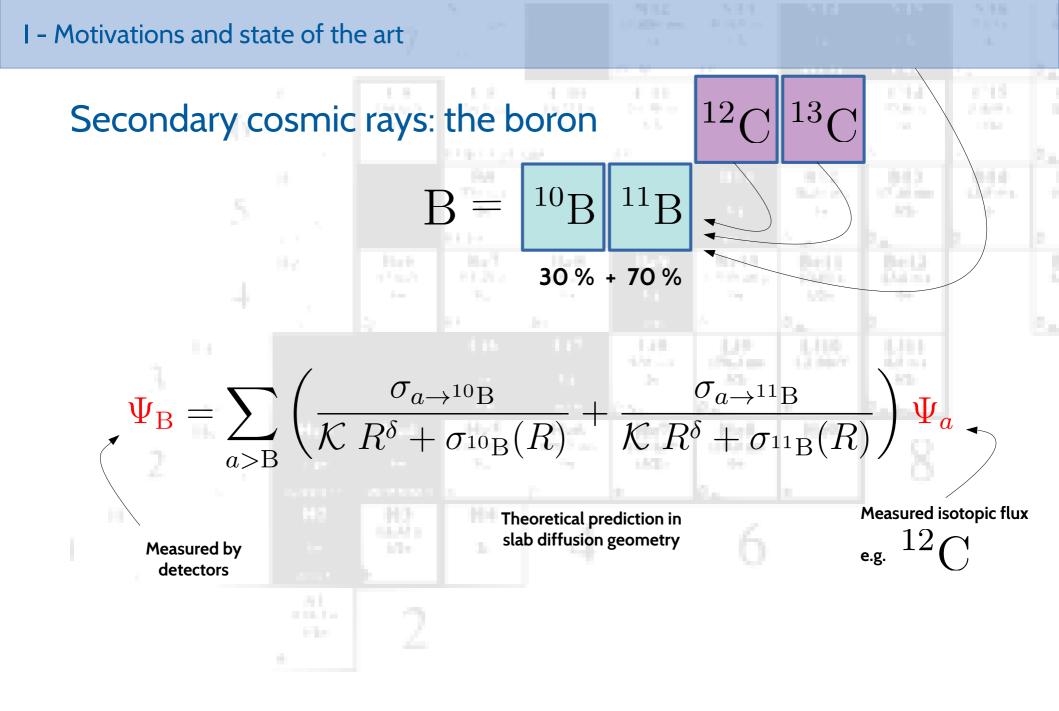

 $\Psi_{i} = \frac{dN_{i}}{dR \, dT \, dS} = \mathcal{F}_{i}^{prop}(\mathcal{Q}_{i}^{inj}(R)) \approx \mathcal{N}_{i}R^{\gamma_{i}}$

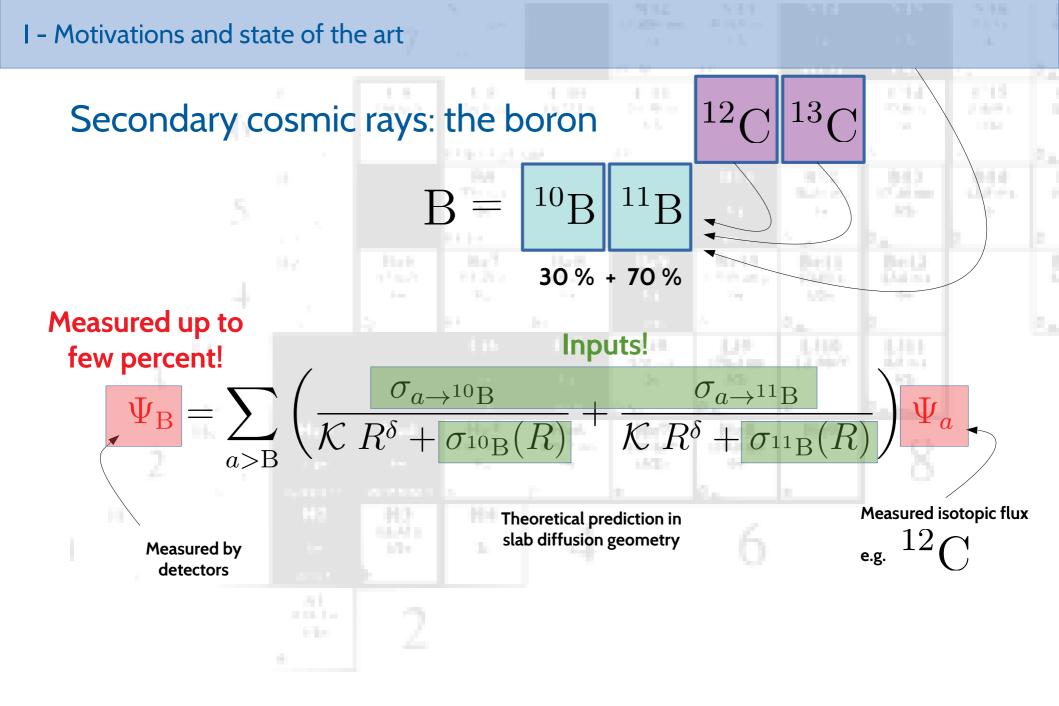

Measured!

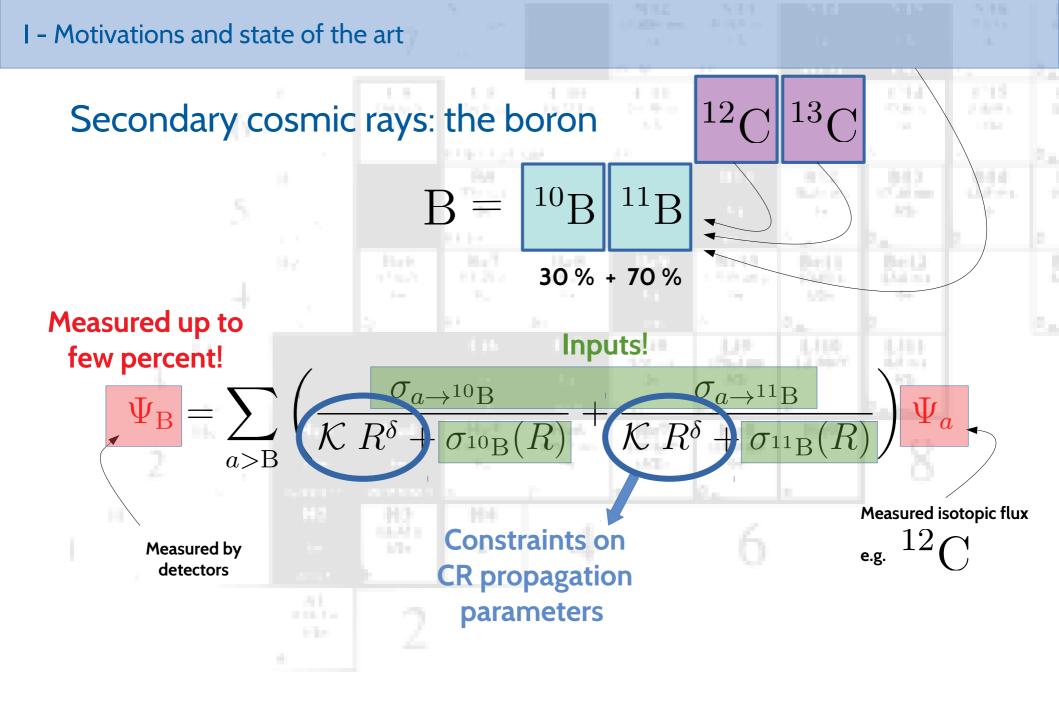
Propagation: - Galactic and ISM physics - Physics of sources (acceleration and escape)

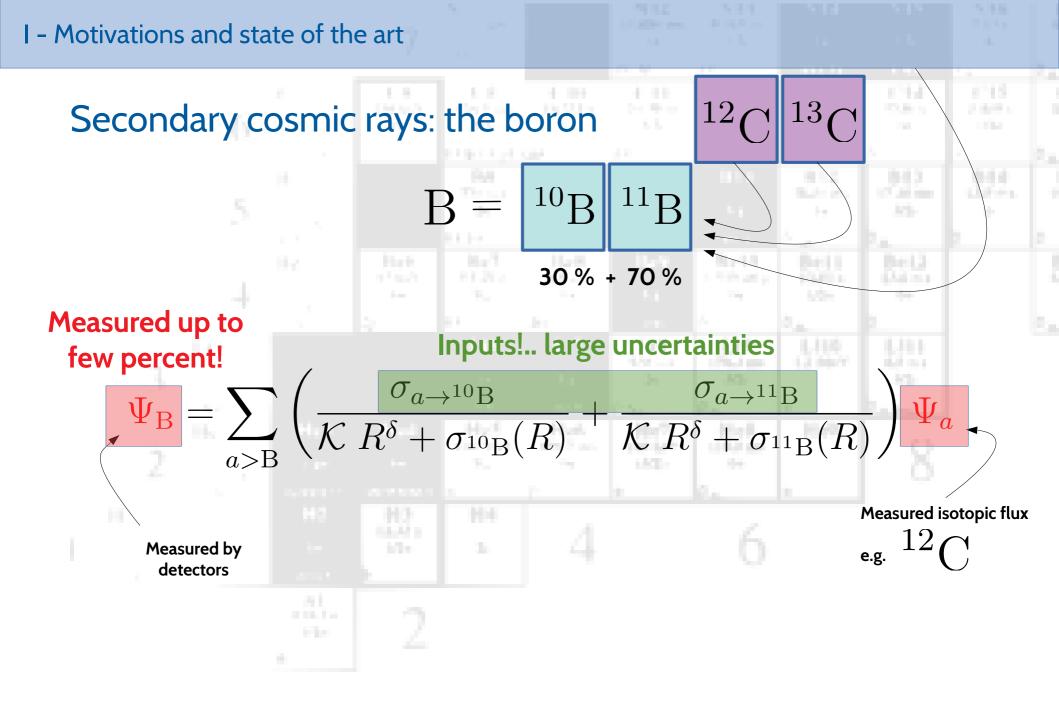

$$\Psi_{i} = \frac{dN_{i}}{dR \, dT \, dS} = \mathcal{F}_{i}^{prop}(\mathcal{Q}_{i}^{inj}(R)) \approx \mathcal{N}_{i}R^{\gamma_{i}}$$
Measured!
Propagation: Injection:
Gonvoluted information
(acceleration and escape)

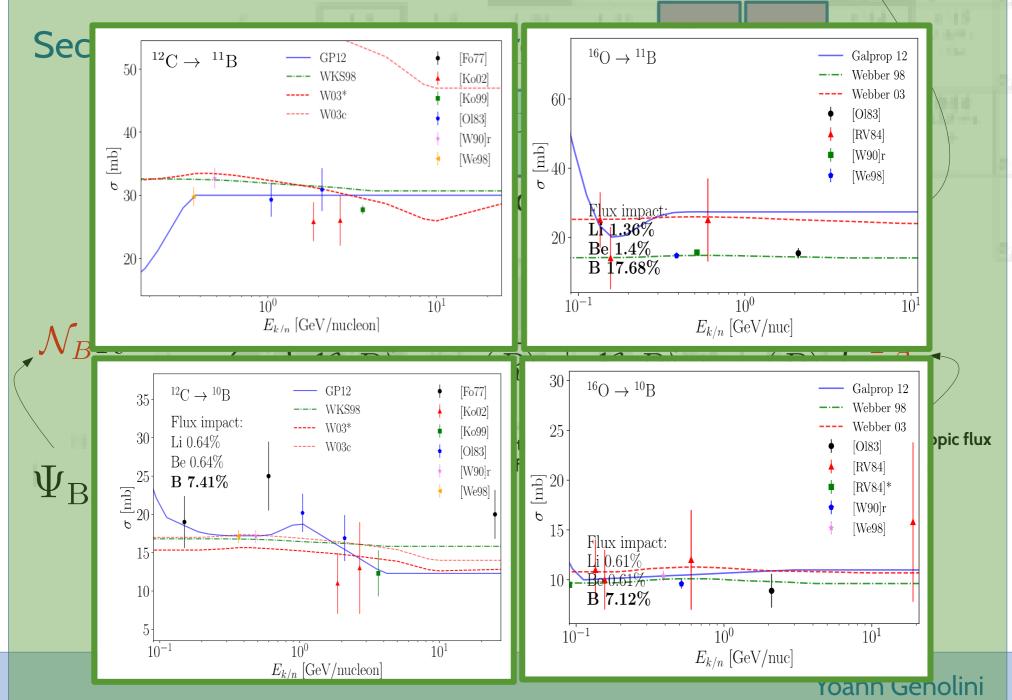


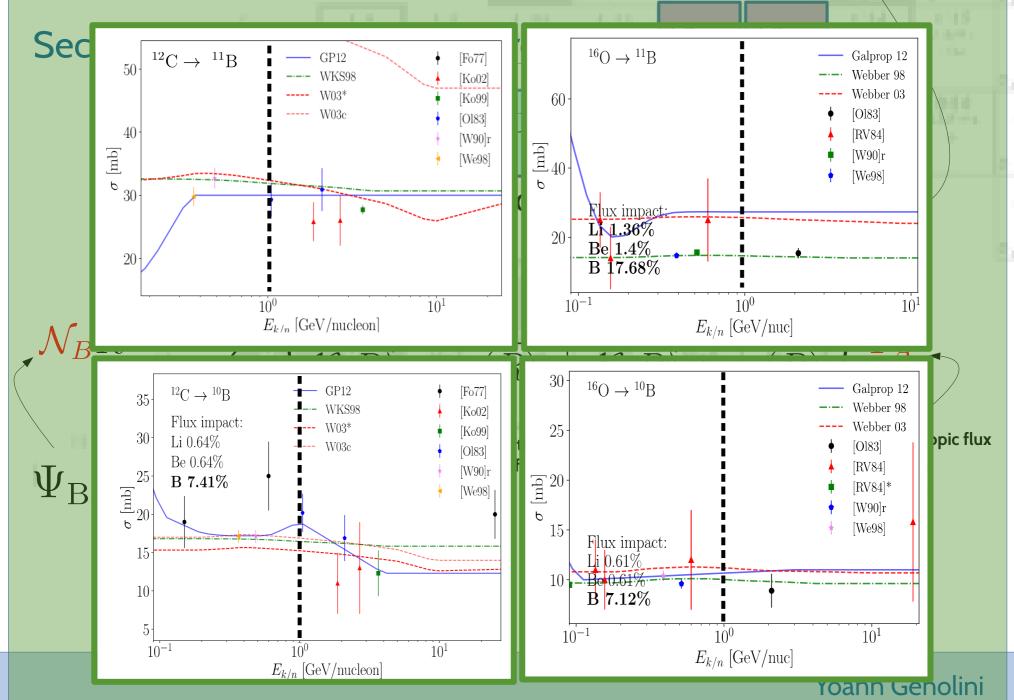


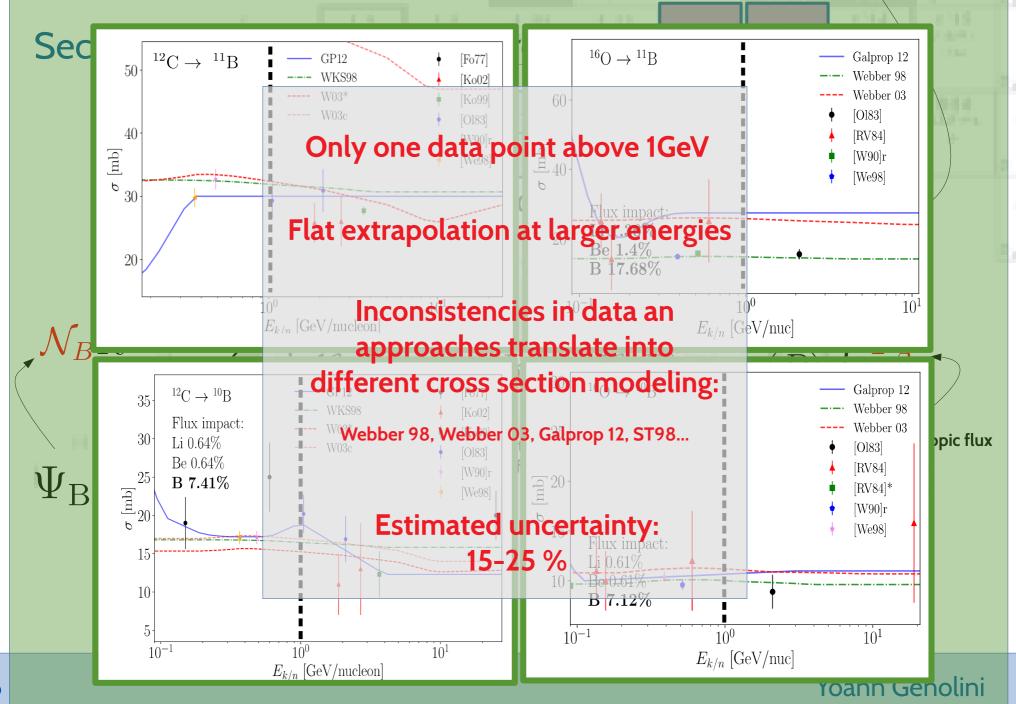

Secondary cosmic rays: the boron

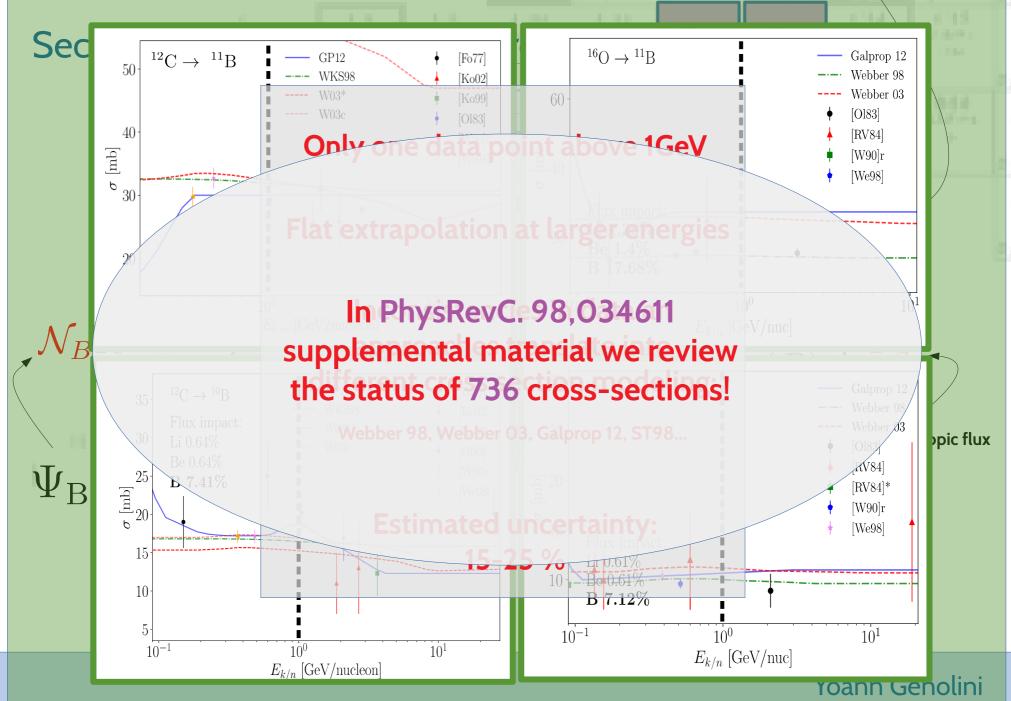


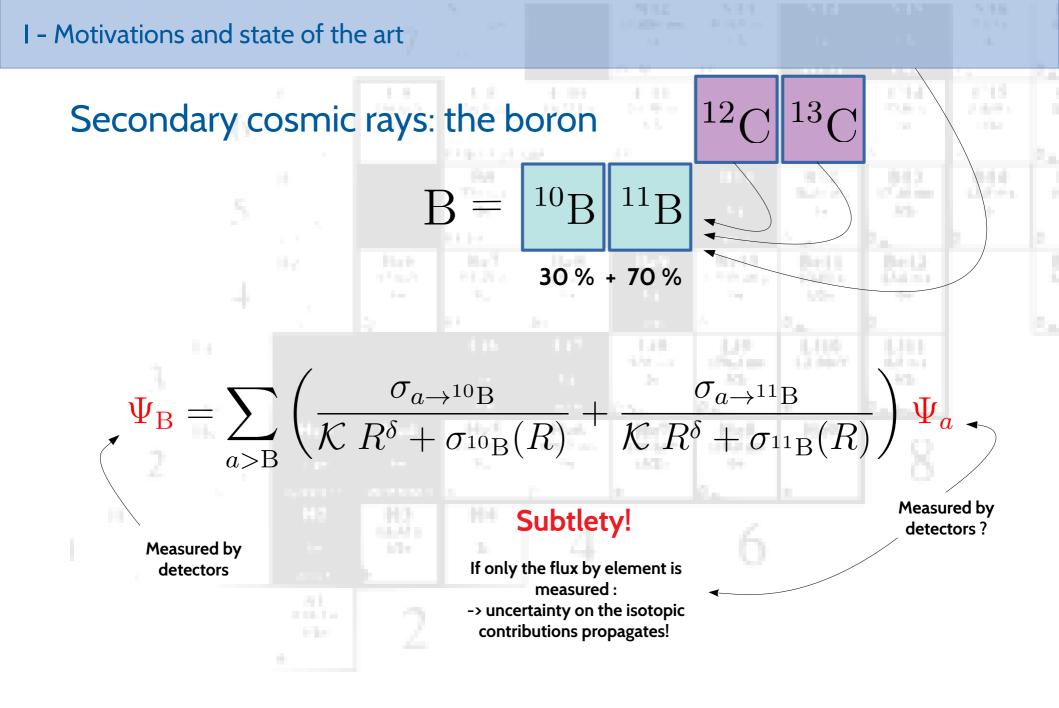


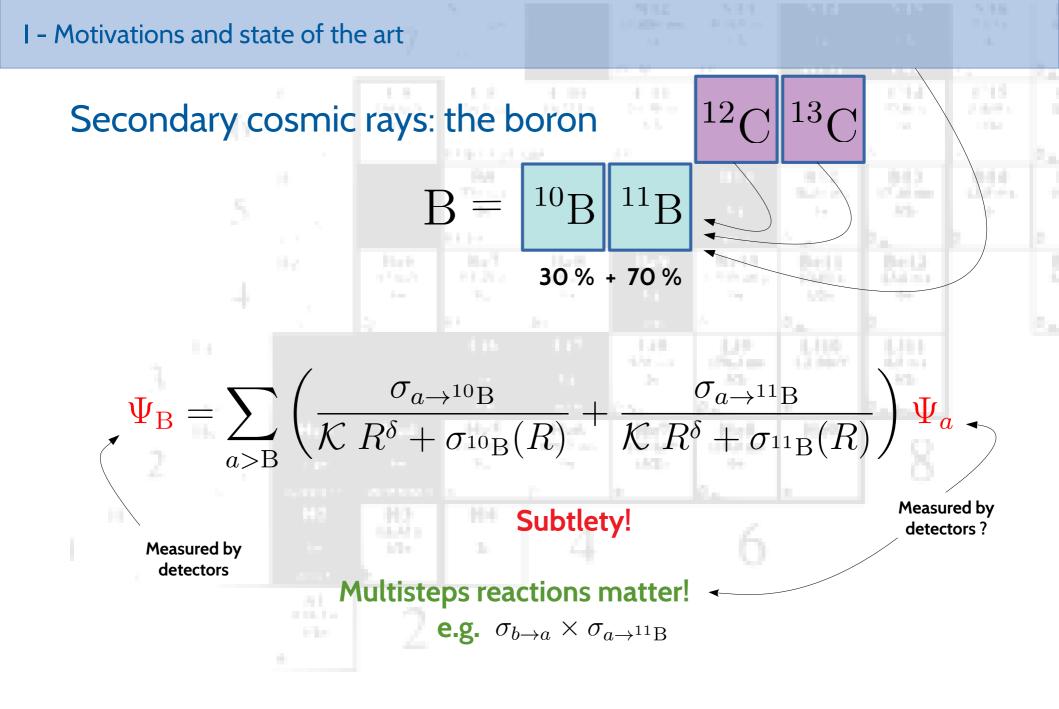


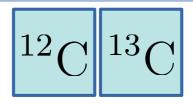


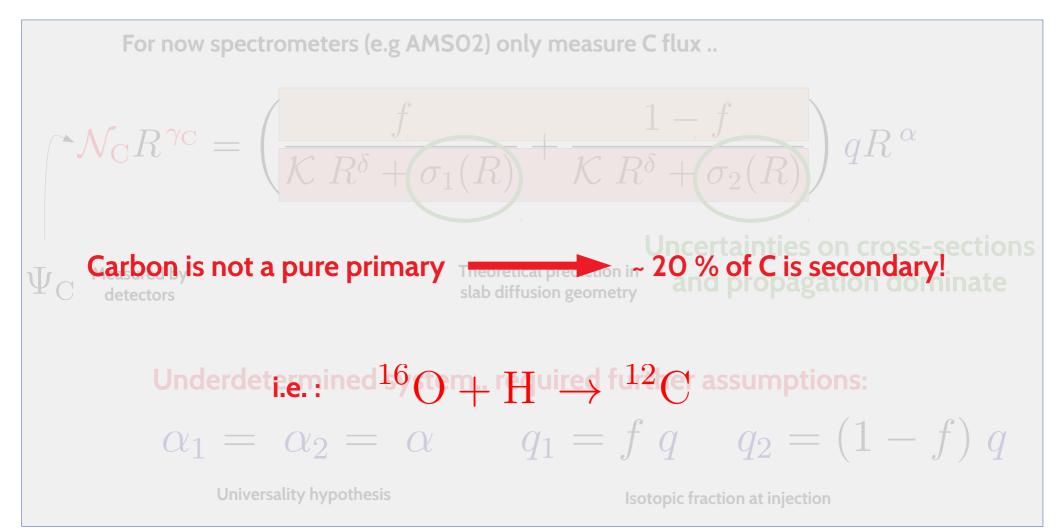


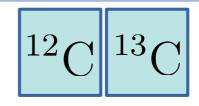





I - Motivations and state of the art


I - Motivations and state of the art





Primary cosmic rays: the carbon

Primary cosmic rays: the carbon

For now spectrometers (e.g. AMSO2) only measure C flux											
	CR	% isotope	pe % of % of multistep total flux secondaries								
			Prim.	Frag.	Rad.	1	2	>2			
$\mathcal{N}_{\mathbf{C}}R^{\gamma_{\mathbf{C}}} = \left(\frac{1}{\mathcal{K}}\right)$	Li	(56%) ⁶ Li (44%) ⁷ Li	0 0 0	100 100 100	0 0 0	66 66 66	25 25 26	9 9 8	(R) qR^{α}		
	Be	(63%) ⁷ Be (30%) ⁹ Be	0 0 0	100 100 100	0 0 0	73 78 65	20 17 26	7 6 9	intios on cross soctions		
Ψ_{C} Carbon is not a pu	В	$(6\%)^{10}$ Be $(33\%)^{10}$ B	0 0 0	100 100 95 85	0 5 15	66 79 70	26 17 24	7 5 6	inties on cross-sections FC is secondary! Propagation cominate		
	С	$(67\%)^{11}$ B (90%) 12 C	0 79 88	100 21 12	0 0 0	82 77 72	14 17 21	4 5 6			
Underdet <mark>ee</mark> n		$(10\%)^{13}$ C $(0.02\%)^{14}$ C	7 0	93 100	0 0	83 56	13 35	4 9	sumptions:		
$\alpha_1 = \alpha$	N	(54%) ¹⁴ N (46%) ¹⁵ N	27 49 0	72 48 100	2 3 0	87 83 89	9 13 7	4 4 3	$q_2 = (1 - f) q$		
Universality h	Universality hypothecie Genolini et al. PhysRevC. 98,034611c fraction at injection										

So far:

- Extracting physics information from CR fluxes requires a carefull treatment of systematics.
- Cross-sections are a major systematic, typical uncertainties of 15-25 % for $\sigma_{b\to a}$ and 5 % for σ_a .
- All CR nuclei break-up and contain a secondary component.
- When we do not measure isotopic fluxes, multistep reactions matter.

					19 1.2 1.1.201 mil	100	5.14	2.12	5.58	
				1.00						
										1.
							1.000			1
			11.1-1							
										î i
		41.621		100		1.111.00		0.4754		- 4
							1.116			2.4
		1.1					1110	511		
II- What are the	e mos	st imp	ortan	it frag	ment	ation	cros	s-sect	ions:	
			10.00							

Flux Impact

The flux of a given element *c* can be decomposed in two parts :

Flux impact f_{abc} of a cross section $\sigma_{a+b\rightarrow c}$: relative variation of the flux when switching off this reaction.

$$f_{abc} = \frac{\Psi_c^{\text{sec}}(\text{ref}) - \Psi_c^{\text{sec}}(\sigma_{a+b\to c} = 0)}{\Psi_c^{\text{sec}}(\text{ref})}$$

Example: at 10 GeV/nuc for the boron flux, for $\sigma_{12}C+H\rightarrow^{11}B$:

$$f_{^{12}\mathrm{C,H},^{11}\mathrm{B}} = \mathbf{18.1\%}$$

Flux Impact

The flux of a given element *c* can be decomposed in two parts :

Flux impact f_{abc} of a cross section $\sigma_{a+b\rightarrow c}$: relative variation of the flux when switching off this reaction.

Mostly H and He targets in the ISM

$$f_{abc} = \frac{\Psi_c^{\text{sec}}(\text{ref}) - \Psi_c^{\text{sec}}(\sigma_{a+b\rightarrow c} = 0)}{\Psi_c^{\text{sec}}(\text{ref})}$$

Example: at 10 GeV/nuc for the boron flux, for $\sigma_{12}C+H \rightarrow ^{11}B$:

$$f_{^{12}\mathrm{C,H},^{11}\mathrm{B}} = \mathbf{18.1\%}$$

Reaction $a + b \rightarrow c$	Flux	impact	t f_{abc} [%]	$\sigma [{ m mb}]$	Data	$\sigma^{ m c}\!/\!\sigma$
	\min	mean	max	range		
$\sigma(^{12}_{12}C + H \rightarrow ^{11}_{12}B)$	18.0	18.1	19.0	30.0	1	1.8
$\sigma(\mathbf{^{12}C} + \mathbf{H} \rightarrow \mathbf{^{11}C})$	16.0	16.2	17.0	26.9	\checkmark	n/a
$\sigma(^{16}\text{O} + \text{H} \rightarrow ^{11}\text{B})$	11.3	11.8	12.0	18.2	1	1.5
$\sigma(^{12}C + H \rightarrow ^{10}B)$	7.20	7.41	7.60	12.3	1	1.1
$\sigma(^{16}_{10}\text{O} + \text{H} \rightarrow ^{10}_{10}\text{B})$	6.82	7.03	7.21	10.9	1	
$\sigma({}^{16}\text{O} + \text{H} \rightarrow {}^{11}\text{C})$	5.67	5.89	6.00	9.1		n/a
$\sigma(^{11}_{10}B + H \rightarrow ^{10}_{10}B)$	4.00	4.07	4.20	38.9	1	
$\sigma(^{12}C + He \rightarrow ^{11}B)$	2.50	2.59	2.70	38.6		1.8
$\sigma({}^{12}\mathbf{C} + \mathbf{He} \rightarrow {}^{11}\mathbf{C})$	2.10	2.14	2.20	32.0		n/a
$\sigma(^{15}_{12}N + H \rightarrow ^{11}_{12}B)$	2.00	2.03	2.10	26.1	1	1.2
$\sigma(^{12}C + H \rightarrow ^{10}C)$	1.80	1.87	1.90	3.1	1	n/a
$\sigma(^{16}_{10}\text{O} + \text{He} \rightarrow ^{11}_{10}\text{B})$	1.67	1.75	1.80	24.4		1.5
$\sigma(^{13}\text{C} + \text{H} \rightarrow^{11}\text{B})$	1.50	1.53	1.60	22.2		1.7
$\sigma(^{12}C + H \rightarrow ^{10}Be)$	1.40	1.48	1.50	4.0	1	
$\sigma(^{14}\text{N} + \text{H} \rightarrow^{11}\text{B})$	1.30	1.34	1.36	17.3	1	1.7
$\sigma(^{12}C + He \rightarrow ^{10}B)$	1.00	1.06	1.10	15.8		1.1
$\sigma(^{16}O + He \rightarrow ^{10}B)$	0.99	1.05	1.09	14.6		
$\sigma(^{24}_{}\mathrm{Mg} + \mathrm{H} \rightarrow^{11}_{}\mathrm{B})$	0.98	1.01	1.00	10.4		1.6

Genolini et al. PhysRevC. 98,034611

Reaction $a + b \rightarrow c$	Flux	impact	t f_{abc} [%	σ [mb]	Data	$\sigma^{\rm c}\!/\!\sigma$
	min	mean	max	range		
$\sigma(^{12}_{12}C + H \rightarrow ^{11}_{12}B)$	18.0	18.1	19.0	30.0	1	1.8
$\sigma(^{12}C + H \rightarrow ^{11}C)$	16.0	16.2	17.0	26.9	\checkmark	n/a
$\sigma(^{16}O + H \rightarrow ^{11}B)'$	11.3	11.8	12.0	18.2	1	1.5
$\sigma(^{12}C + H \rightarrow ^{10}B)$	7.20	7.41	7.60	12.3	\checkmark	1.1
$\sigma(^{16}\text{O} + \text{H} \rightarrow^{10}\text{B})$	6.82	7.03	7.21	10.9	1	
$\sigma(^{16}O + H \rightarrow^{11}C)$	5.67	5.89	6.00	9.1		n/a
$\sigma(^{11}B + H \rightarrow ^{10}B)$	4.00	4.07	4.20	38.9	1	
$\sigma(^{12}C + He \rightarrow^{11}B)$	2.50	2.59	2.70	38.6		1.8
$\sigma(\mathbf{^{12}C} + \mathbf{He} \rightarrow \mathbf{^{11}C})$	2.10	2.14	2.20	32.0		n/a
$\sigma(^{13}N + H \rightarrow ^{11}B)$	2.00	2.03	2.10	26.1	\checkmark	1.2
$\sigma({}^{12}C + H \rightarrow {}^{10}C)$	1.80	1.87	1.90	3.1	\checkmark	n/a
$\sigma(^{16}\text{O} + \text{He} \rightarrow^{11}\text{B})$	1.67	1.75	1.80	24.4		1.5
$\sigma(^{13}C + H \rightarrow ^{11}B)$	1.50	1.53	1.60	22.2		1.7
σ (¹² C + H \rightarrow ¹⁰ Be)	1.40	1.48	1.50	4.0	1	
$\sigma(^{14}\text{N} + \text{H} \rightarrow^{11}\text{B})'$	1.30	1.34	1.36	17.3	1	1.7
$\sigma(^{12}\text{C} + \text{He} \rightarrow^{10}\text{B})$	1.00	1.06	1.10	15.8		1.1
$\sigma(^{16}\text{O} + \text{He} \rightarrow^{10}\text{B})$	0.99	1.05	1.09	14.6		
$\sigma(^{24}_{14}Mg + H \rightarrow^{11}_{11}B)$	0.98	1.01	1.00	10.4		1.6
	Conclini et al. Dhy		02461			

Genolini et al. PhysRevC. 98,034611

Fluctuations using different cross-section parameterization.

Reaction $a + b \rightarrow c$	Flux	impact	t f_{abc} [%]	$\sigma \; [{\rm mb}]$	Data	$\sigma^{\rm c}\!/\!\sigma$
	\min	mean	\max	range		
$\sigma(^{12}_{12}C + H \rightarrow ^{11}_{12}B)$	18.0	18.1	19.0	30.0	1	1.8
$\sigma({}^{12}C + H \rightarrow {}^{11}C)$	16.0	16.2	17.0	26.9	1	n/a
$\sigma(^{16}\text{O} + \text{H} \rightarrow^{11}\text{B})$	11.3	11.8	12.0	18.2	1	1.5
$\sigma(^{12}C + H \rightarrow ^{10}B)$	7.20	7.41	7.60	12.3	1	1.1
$\sigma(^{16}\text{O} + \text{H} \rightarrow^{10}\text{B})$	6.82	7.03	7.21	10.9	1	
$\sigma({}^{16}O + H \rightarrow {}^{11}\acute{C})$	5.67	5.89	6.00	9.1		n/a
$\sigma(^{11}\text{B} + \text{H} \rightarrow ^{10}\text{B})$	4.00	4.07	4.20	38.9	1	,
$\sigma(^{12}C + He \rightarrow^{11}B)$	2.50	2.59	2.70	38.6		1.8
$\sigma({}^{12}C + He \rightarrow {}^{11}C)$	2.10	2.14	2.20	32.0		n/a
$\sigma(^{15}\text{N} + \text{H} \rightarrow^{11}\text{B})$	2.00	2.03	2.10	26.1	1	1.2
$\sigma(^{12}C + H \rightarrow ^{10}C)$	1.80	1.87	1.90	3.1	1	n/a
$\sigma(^{16}\text{O} + \text{He} \rightarrow^{11}\text{B})$	1.67	1.75	1.80	24.4		1.5
$\sigma(^{13}\text{C} + \text{H} \rightarrow^{11}\text{B})$	1.50	1.53	1.60	22.2		1.7
$\sigma(^{12}C + H \rightarrow ^{10}Be)$	1.40	1.48	1.50	4.0	1	
$\sigma(^{14}N + H \rightarrow ^{11}B)'$	1.30	1.34	1.36	17.3	1	1.7
$\sigma(^{12}C + He \rightarrow^{10}B)$	1.00	1.06	1.10	15.8		1.1
σ (¹⁶ O + He \rightarrow ¹⁰ B)	0.99	1.05	1.09	14.6		
$\sigma(^{24}_{14}Mg + H \rightarrow^{11}_{14}B)$	0.98	1.01	1.00	10.4		1.6

Genolini et al. PhysRevC. 98,034611

Expected value (from Galprop parameterization).

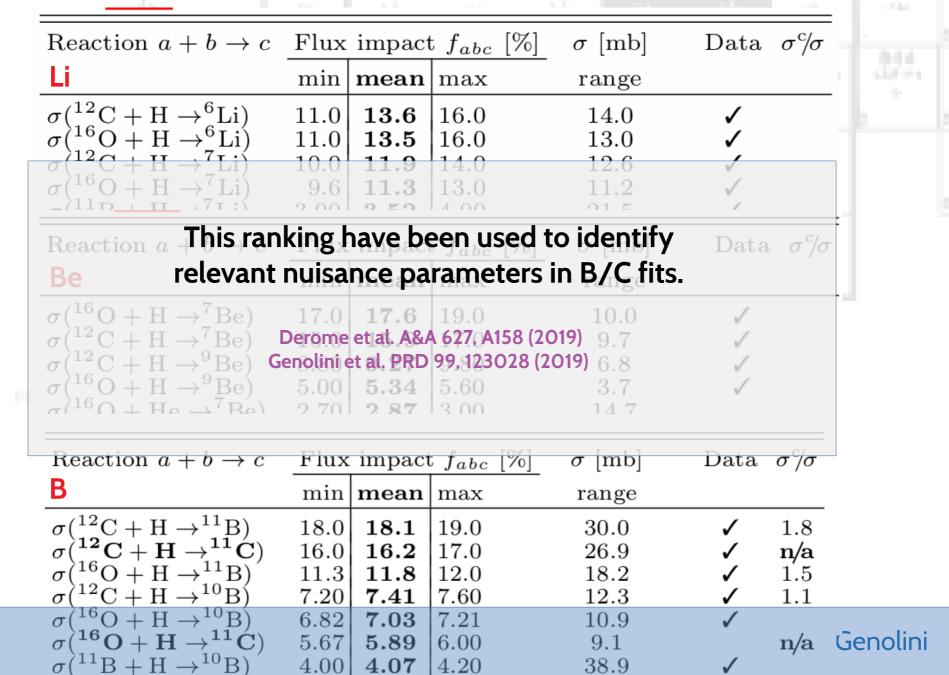
Reaction $a + b \rightarrow c$	Flux	impact	f_{abc} [%]	$\sigma [{ m mb}]$	Data	$\sigma^{c/\sigma}$
		Impact		o [mo]	Data	0 /0
	\min	mean	\max	range		
$\sigma(^{12}_{12}C + H \rightarrow ^{11}_{12}B)$	18.0	18.1	19.0	30.0	1	1.8
$\sigma(^{12}\mathbf{C} + \mathbf{H} \rightarrow ^{11}\mathbf{C})$	16.0	16.2	17.0	26.9	\checkmark	n/a
$\sigma(^{16}\text{O} + \text{H} \rightarrow^{11}\text{B})$	11.3	11.8	12.0	18.2	\checkmark	1.5
$\sigma(^{12}C + H \rightarrow ^{10}B)$	7.20	7.41	7.60	12.3	\checkmark	1.1
$\sigma(^{16}\text{O} + \text{H} \rightarrow^{10}\text{B})$	6.82	7.03	7.21	10.9	\checkmark	
$\sigma({}^{16}O + H \rightarrow {}^{11}\acute{C})$	5.67	5.89	6.00	9.1		n/a
$\sigma(^{11}B + H \rightarrow ^{10}B)$	4.00	4.07	4.20	38.9	\checkmark	
$\sigma(^{12}C + He \rightarrow^{11}B)$	2.50	2.59	2.70	38.6		1.8
$\sigma(\mathbf{^{12}C} + \mathbf{He} \rightarrow \mathbf{^{11}C})$	2.10	2.14	2.20	32.0		n/a
$\sigma(^{15}\text{N} + \text{H} \rightarrow^{11}\text{B})$	2.00	2.03	2.10	26.1	\checkmark	1.2
$\sigma(^{12}C + H \rightarrow ^{10}C)$	1.80	1.87	1.90	3.1	\checkmark	n/a
$\sigma(^{16}\text{O} + \text{He} \rightarrow^{11}\text{B})$	1.67	1.75	1.80	24.4		1.5
$\sigma(^{13}\text{C} + \text{H} \rightarrow ^{11}\text{B})$	1.50	1.53	1.60	22.2		1.7
$\sigma(^{12}\text{C} + \text{H} \rightarrow ^{10}\text{Be})$	1.40	1.48	1.50	4.0	\checkmark	
$\sigma(^{14}\text{N} + \text{H} \rightarrow ^{11}\text{B})$	1.30	1.34	1.36	17.3	\checkmark	1.7
$\sigma(^{12}C + He \rightarrow ^{10}B)$	1.00	1.06	1.10	15.8		1.1
σ (¹⁶ O + He \rightarrow ¹⁰ B)	0.99	1.05	1.09	14.6		
$\sigma(^{24}Mg + H \rightarrow^{11}B)$	0.98	1.01	1.00	10.4		1.6

Genolini et al. PhysRevC. 98,034611

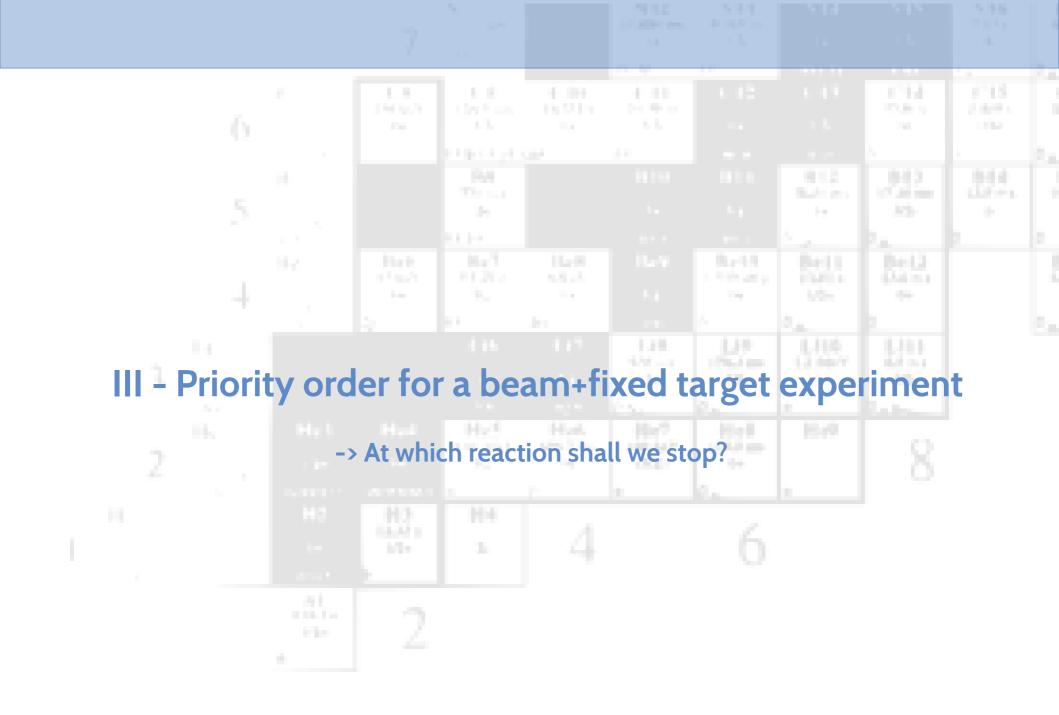
Are there any data? -> In the Supplemental Material.

Reaction $a + b \rightarrow c$	Flux	impact	f_{abc} [%]	$\sigma [{ m mb}]$	Data	$\sigma^{ m c}\!/\!\sigma$
	\min	mean	max	range		
$\sigma(^{12}_{12}C + H \rightarrow ^{11}_{12}B)$	18.0	18.1	19.0	30.0	1	1.8
$\sigma(\mathbf{^{12}C} + \mathbf{H} \rightarrow \mathbf{^{11}C})$	16.0	16.2	17.0	26.9	1	n/a
$\sigma(^{16}\text{O} + \text{H} \rightarrow^{11}\text{B})$	11.3	11.8	12.0	18.2	1	1.5
$\sigma(^{12}C + H \rightarrow ^{10}B)$	7.20	7.41	7.60	12.3	1	1.1
$\sigma(^{16}\text{O} + \text{H} \rightarrow ^{10}\text{B})$	6.82	7.03	7.21	10.9	1	
$\sigma(^{16}\text{O} + \text{H} \rightarrow ^{11}\text{C})$	5.67	5.89	6.00	9.1		n/a
$\sigma(^{11}\text{B} + \text{H} \rightarrow ^{10}\text{B})$	4.00	4.07	4.20	38.9	1	<i>'</i>
$\sigma(^{12}C + He \rightarrow^{11}B)$	2.50	2.59	2.70	38.6	-	1.8
$\sigma(\mathbf{^{12}C} + \mathbf{He} \rightarrow \mathbf{^{11}C})$	2.10	2.14	2.20	32.0		n/a
$\sigma(^{15}\text{N} + \text{H} \rightarrow^{11}\text{B})$	2.00	2.03	2.10	26.1	1	1.2
$\sigma({}^{12}C + H \rightarrow {}^{10}C)$	1.80	1.87	1.90	3.1	1	n/a
σ (¹⁶ O + He \rightarrow ¹¹ B)	1.67	1.75	1.80	24.4		1.5
$\sigma(^{13}\text{C} + \text{H} \rightarrow^{11}\text{B})$	1.50	1.53	1.60	22.2		1.7
$\sigma(^{12}\text{C} + \text{H} \rightarrow ^{10}\text{Be})$	1.40	1.48	1.50	4.0	1	
$\sigma(^{14}\text{N} + \text{H} \rightarrow^{11}\text{B})'$	1.30	1.34	1.36	17.3	1	1.7
σ (¹² C + He \rightarrow ¹⁰ B)	1.00	1.06	1.10	15.8	-	1.1
$\sigma(^{16}\text{O} + \text{He} \rightarrow^{10}\text{B})$	0.99	1.05	1.09	14.6		
$\sigma(^{24}Mg + H \rightarrow^{11}B)$	0.98	1.01	1.00	10.4		1.6

Genolini et al. PhysRevC. 98,034611


Including short-lived nuclei

Flux impacts for other elements Li, Be, B, C, N


Reaction $a + b \rightarrow c$	Flux	impact	t f_{abc} [%]	$\sigma [{ m mb}]$	Data	$\sigma^{ m c}\!/\!\sigma$	
Li	\min	mean	\max	range			- 323
$\sigma(^{12}_{12}C + H \rightarrow ^{6}_{a}Li)$	11.0	13.6	16.0	14.0	1		
$\sigma(^{16}_{10}\text{O} + \text{H} \rightarrow ^{6}_{2}\text{Li})$	11.0	13.5	16.0	13.0	1		
$\sigma(^{12}_{12}C + H \rightarrow ^{7}_{7}Li)$	10.0	11.9	14.0	12.6	\checkmark		
$\sigma(^{16}\text{O} + \text{H} \rightarrow ^{7}\text{Li})$	9.6	11.3	13.0	11.2	1		
	2 00	0 50	14.00	01 E	/		-
Reaction $a + b \rightarrow c$	Flux	impact	t f_{abc} [%]	$\sigma \; [{ m mb}]$	Data	σ°/σ	-
Ве	\min	mean	\max	range			
$\sigma(^{16}_{12}\text{O} + \text{H} \rightarrow ^{7}_{-}\text{Be})$	17.0	17.6	19.0	10.0	1		
$\sigma(^{12}C + H \rightarrow^{7}Be)$	15.0	15.9	17.0	9.7	1		
$\sigma(^{12}C + H \rightarrow ^{9}Be)$	8.80	9.27	9.80	6.8	1		
$\sigma(^{10}\text{O} + \text{H} \rightarrow ^{9}\text{Be})$	5.00	5.34	5.60	3.7	~		
$\sigma^{16}O \perp H_{P} \rightarrow {}^{7}B_{P}$	2 70	2.87	13.00	147			
Reaction $a + b \rightarrow c$	Flux	impact	t f_{abc} [%]	σ [mb]	Data	$\sigma^{\rm c}\!/\!\sigma$	
В	min			range			
$\sigma(^{12}\text{C} + \text{H} \rightarrow ^{11}\text{B})$	18.0	18.1	19.0	30.0	1	1.8	
$\sigma({}^{12}C + H \rightarrow {}^{11}C)$	16.0	1	17.0	26.9	1	n/a	
$\sigma(^{16}\text{O} + \text{H} \rightarrow^{11}\text{B})$	11.3		12.0	18.2	\checkmark	1.5	
$\sigma(^{12}C + H \rightarrow ^{10}B)$	7.20		7.60	12.3	\checkmark	1.1	
$\sigma(^{16}_{16}\text{O} + \text{H} \rightarrow ^{10}_{11}\text{B})$	6.82		7.21	10.9	\checkmark		
$\sigma({}^{16}_{11}\text{O} + \text{H} \rightarrow {}^{11}_{10}\text{C})$	5.67	5.89	6.00	9.1		n/a	Genoli
$\sigma(^{11}B + H \rightarrow ^{10}B)'$	4.00	4.07	4.20	38.9	\checkmark		

13

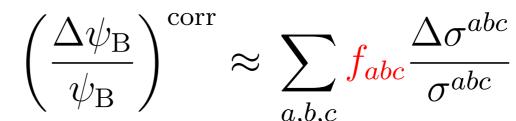
Flux impacts for other elements Li, Be, B, C, N

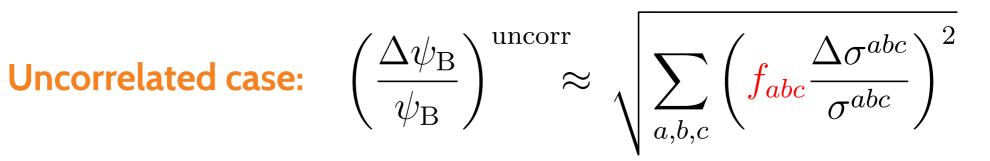
					11.00 Percent	111	1.14		1.15	
				4.00						Ē
										24
							. *			
			11.14							ĥ
				6.6.4		1.11.01.00.0		104.00		14
										5.
							1110			-
III - Priori	hyard	lor for	a ha	a ma i fi	vod t	argot		rimon	•	
III - PHOH	Ly Old		abe	am+n	xed t	arger	expe	imen	L .	
			1.00 Yest. 7.0							

Propagating the uncertainty to the flux:

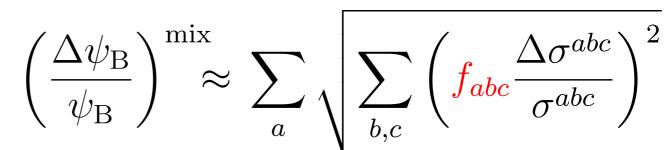
At a given energy, consider the variation of the flux :

$$d\psi_{\rm B} = \sum_{a,b,c} \frac{\partial \psi_{\rm B}}{\partial \sigma^{abc}} \ d\sigma^{abc}$$

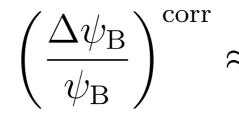

Introducing the flux impact f_{abc} :


$$\left(\frac{\Delta\psi_{\rm B}}{\psi_{\rm B}}\right) \approx \sum_{a,b,c} f_{abc} \frac{\Delta\sigma^{abc}}{\sigma^{abc}}$$

Example: with f_{abc} = 10% and a relative uncertainty of 10% for the cross section, the uncertainty on the flux is of 1%.


Uncertainties of cross sections : several cases

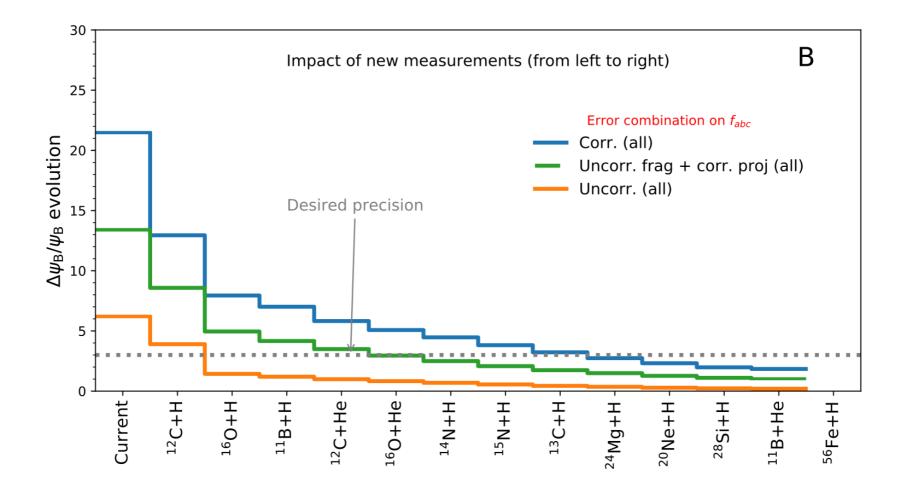
Correlated case:

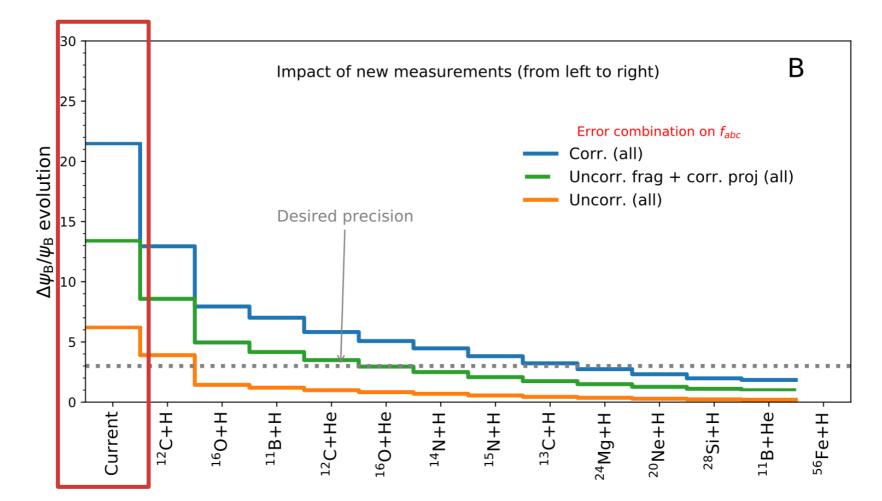

Realistic case:

Correlated projectile & uncorrelated fragments.

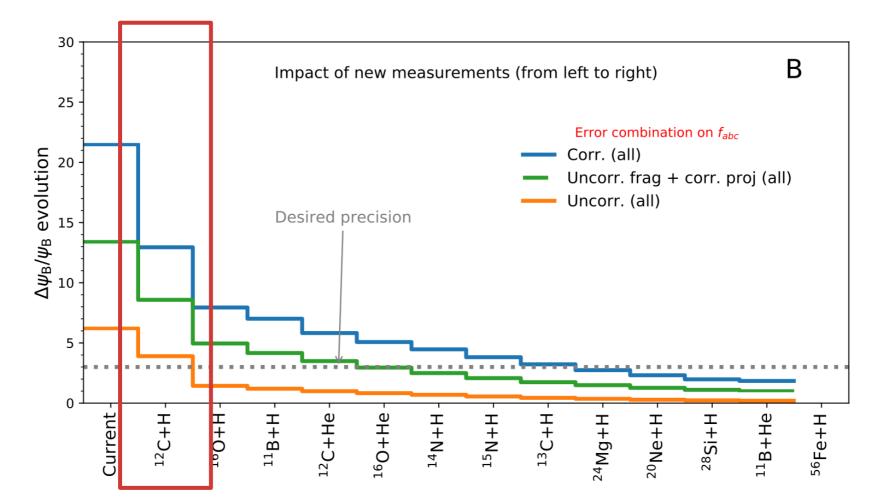
Uncertainties of cross sections : several cases Assumed to be 20 % ~

Correlated case:

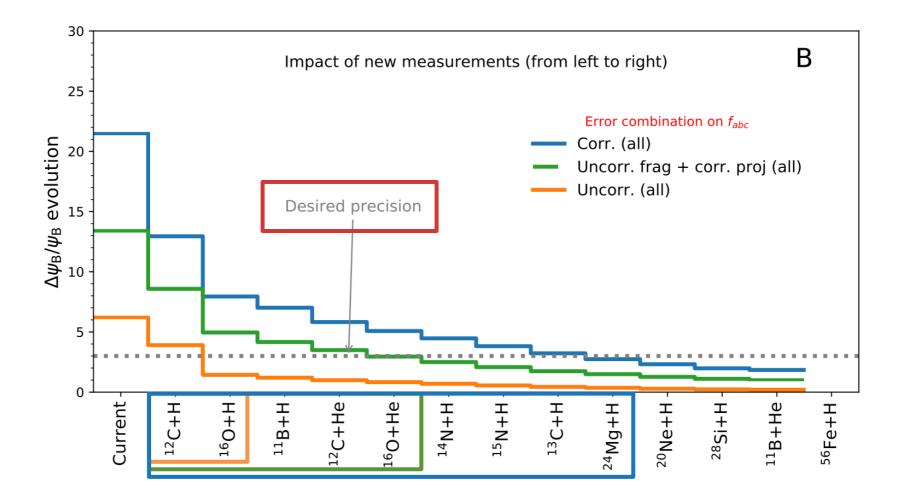


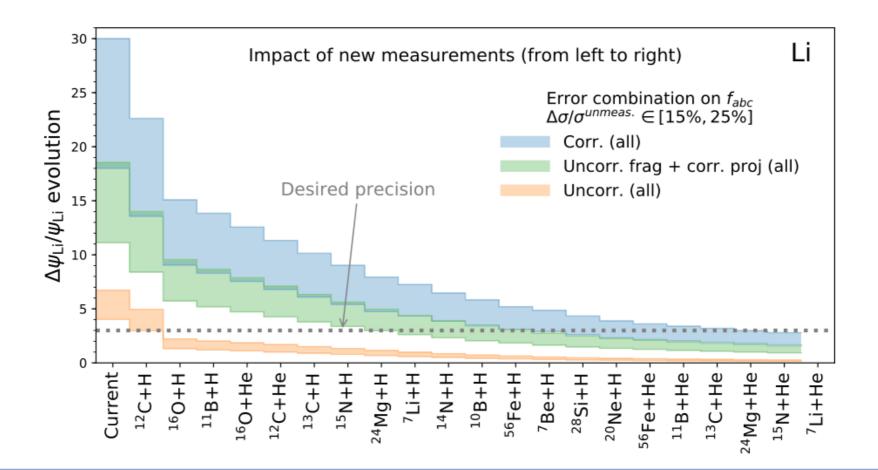

Uncorrelated case:

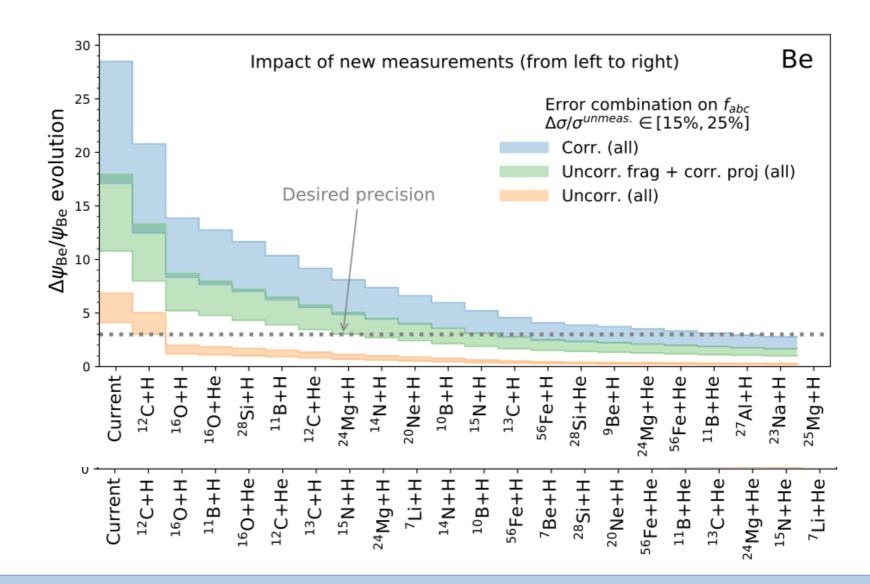
$$\left(\frac{\Delta\psi_{\rm B}}{\psi_{\rm B}}\right)^{\rm uncorr} \approx \sqrt{\sum_{a,b,c} \left(\int_{abc} \frac{\Delta\sigma^{abc}}{\sigma^{abc}} \right)^2}$$

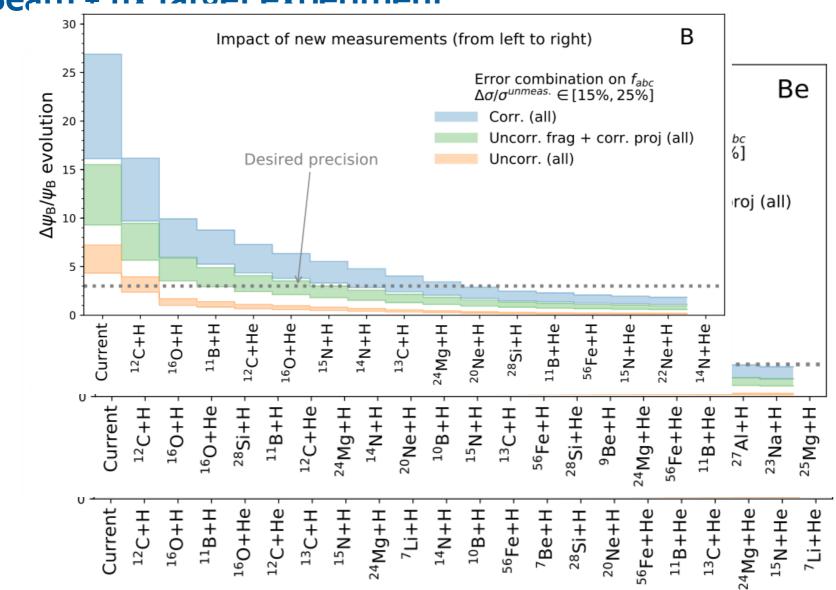

Realistic case:

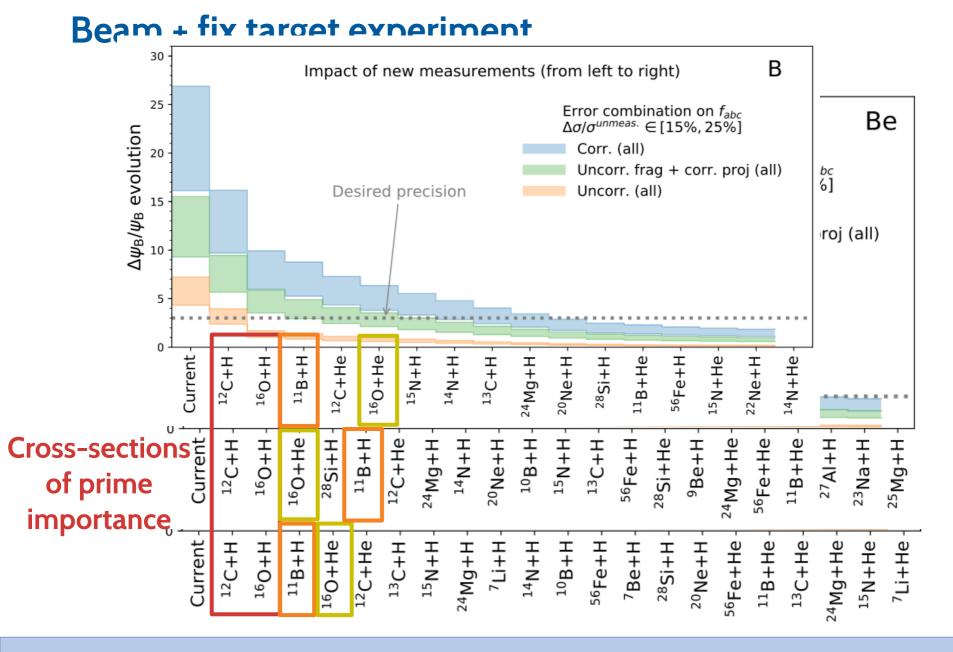
$$\left(\frac{\Delta\psi_{\rm B}}{\psi_{\rm B}}\right)^{\rm mix} \approx \sum_{a} \sqrt{\sum_{b,c} \left(\int_{abc} \frac{\Delta\sigma^{abc}}{\sigma^{abc}}\right)^2}$$

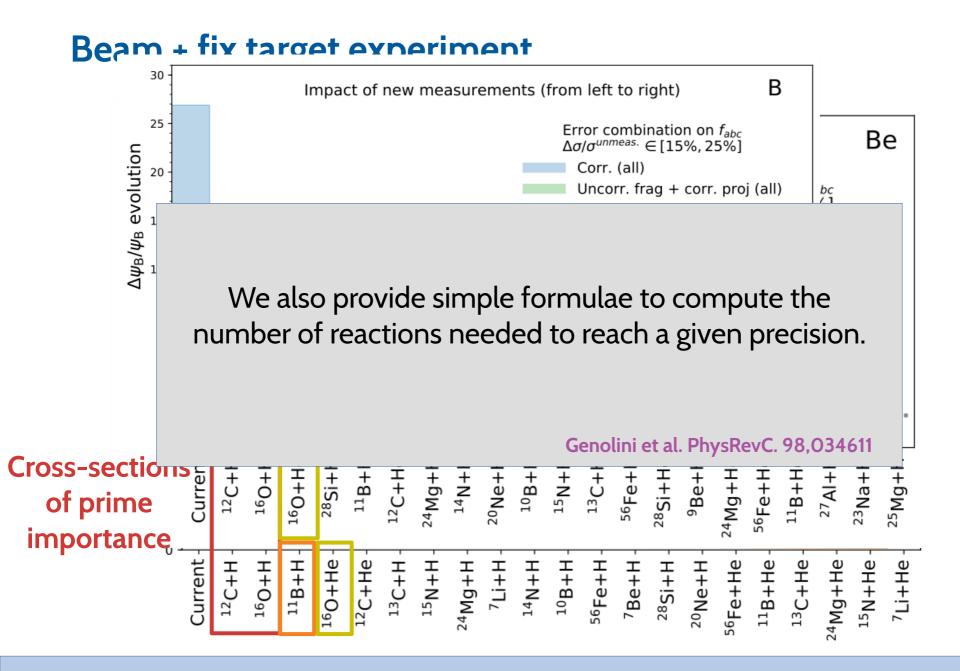





Current status




Measured with infinite precision



IV- Conclusion and prospects

IV- Conclusion and prospects

The problem: Fragmentation cross sections are a limiting factor to reach the percent precision in modelling!

The question: What should we do?

The answer: Measuring few key interactions with high accuracy in the range:

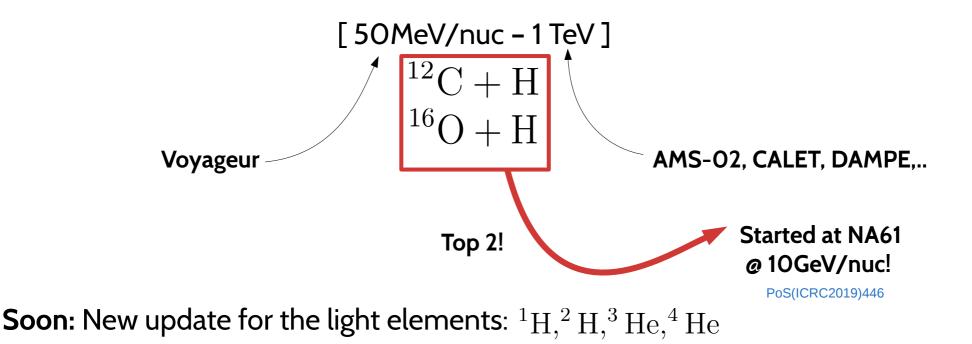


TABLE XV: List of ghost nuclei with significant contributions to Li-C fluxes from Tables X to XIV: the half-life, decay channel, and branching ratio are taken from 142.

Nucleus	$T_{1/2}$	Daughter (decay mode)
$^{6}\mathrm{He}$	$806.92~\mathrm{ms}$	⁶ Li (β^- , 100%)
9 Li	$178.3~\mathrm{ms}$	⁹ Be (β^- , 49.2%, ⁴ He ($\beta^- n$, 50.8%)
$^{10}\mathrm{C}$	$19.3009~\mathrm{s}$	${}^{10}B~(\beta^+,~100\%)$
$^{11}\mathrm{C}$	$20.364~\mathrm{m}$	¹¹ B (β^+ , 100%)
$^{12}\mathrm{B}$	$20.20~\mathrm{ms}$	¹² C (β^- , 98.4%), ⁴ He ($\beta^- 3\alpha$, 1.6%)
13 N	$9.965 \mathrm{~m}$	$^{13}C \ (\beta^+, \ 100\%)$
$^{13}\mathrm{O}$	$8.58 \mathrm{\ ms}$	¹³ C (β^+ , 89.1%), ¹² C ($\beta^+ p$, 10.9%)
$^{14}\mathrm{O}$	$70.620~{\rm s}$	14 N (β^+ , 100%)
$^{15}\mathrm{O}$	$122.24~\mathrm{s}$	15 N (β^+ , 100%)

$$N^{k} + (p, He) \longrightarrow {}^{9}_{3}Li \ (t_{1/2} = 178 \ ms) \xrightarrow{\beta}{}^{9}_{4}Be \qquad (\mathcal{B}r = 49.2\%)$$
$$N^{k} + (p, He) \longrightarrow {}^{11}_{3}Li \ (t_{1/2} = 8.6 \ ms) \xrightarrow{\beta}{}^{-+2n}_{4}Be \qquad (\mathcal{B}r = 4.1\%)$$

 $\sim -$

$$\sigma_{i \to \frac{9}{4}Be}^{effective} = \sigma_{i \to \frac{9}{4}Be} + 49.2\% \ \sigma_{i \to \frac{9}{3}Li} + 4.1\% \ \sigma_{i \to \frac{11}{3}Li}$$