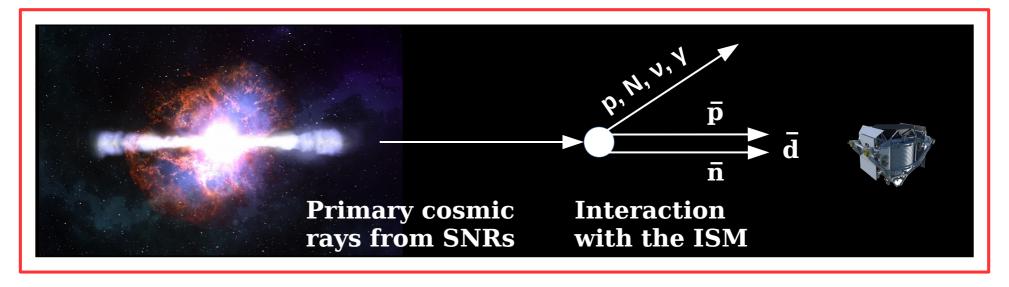
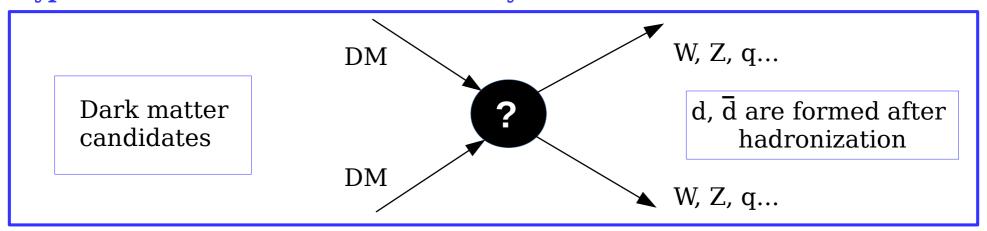
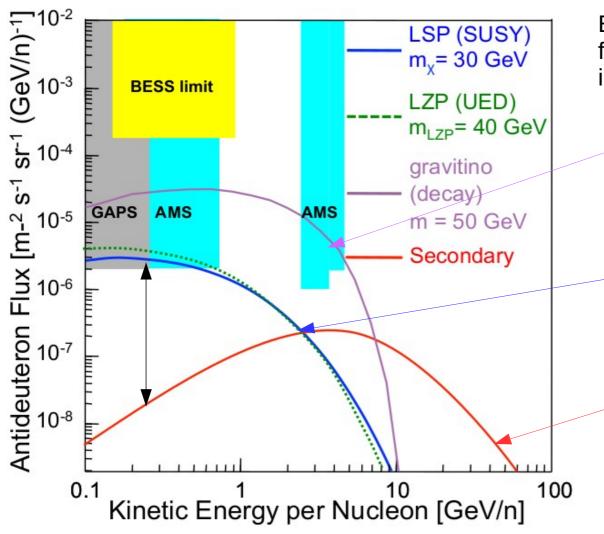
Antideuteron and antihelium cross sections for cosmic-ray studies

Diego Gomez


Department of Physics & Astronomy
University of Hawaii at Manoa
dgomezco@hawaii.edu


XSCRC workshop CERN Nov 2019

Indirect search for dark matter


Expected antideuteron production in cosmic-ray interactions

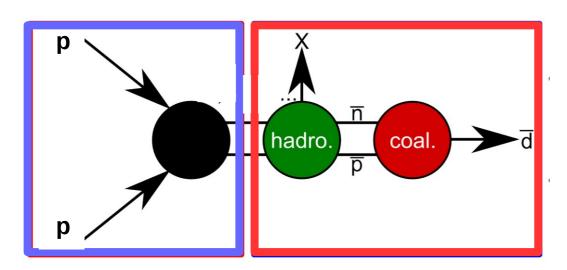
Hypothetical antideuteron cosmic-rays from dark matter

Indirect search for dark matter

Examples of antideuteron signals from dark matter candidates interactions.

Late decays of unstable gravitinos

Neutralino:


SUSY lightest supersymetric particle, decay into bb

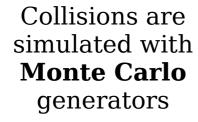
Astrophysical background: Cosmic-ray collisions with the interstellar medium

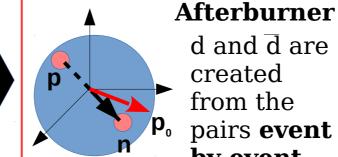
Antideuterons are an important unexplored indirect detection technique.

T. Aramaki et al., Phys. Rept. 618, 1 (2016), arXiv:1505.07785 [hep-ph].

Antideuteron formation model

Coalescence Model


Deuterons and antideuterons can be formed by a pair p-n or \overline{p} - \overline{n} close in phase space.


$$\gamma_d \frac{d^3 N_d}{dp_d^3} = \frac{4\pi}{3} p_0^3 \left(\gamma_p \frac{d^3 N_p}{dp_p^3} \right) \left(\gamma_n \frac{d^3 N_n}{dp_n^3} \right)$$

p+p, p+He, He+p, pbar+p collisions

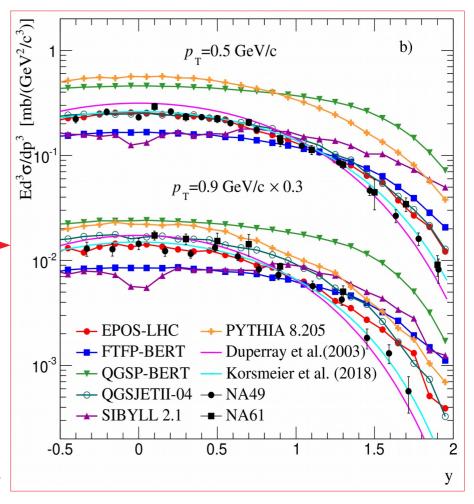
Coalescence

 $\mathbf{p_0}$ is extracted from this comparison

d and \overline{d} are created from the pairs **event**

by event

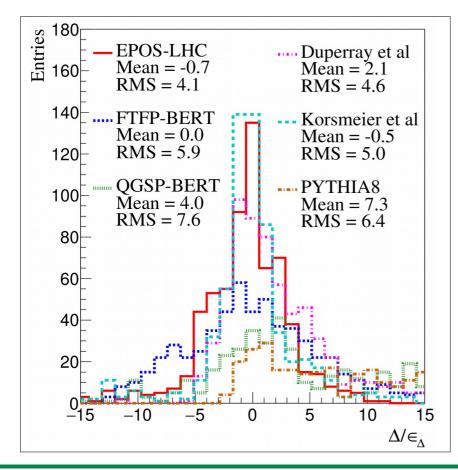
The results from simulations are compared to data

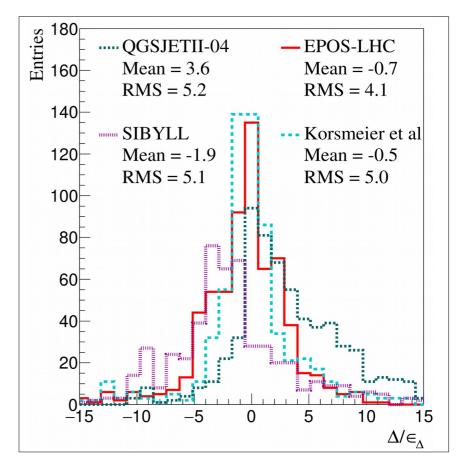

Antiproton production simulation

 To generate a correct prediction of antideuterons using MC, it is necessary to have a proper description of antiprotons.

Invariant differential cross section for **antiprotons** in p+p collisions at 158 GeV/c, as function of rapidity

Experiment or Laboratory	Reference	Collision	Final states	p_{lab} (GeV/c)	\sqrt{s} (GeV)
ITEP ¹	[192]	p+Be	p	10.1	4.5
CERN ¹	[193, 194]	$_{\rm p+p}$	p, \bar{p}	19.2	6.1
		p+Be	p, p		
CERN ¹	[194]	$_{\mathrm{p+p}}$	p	24	6.8
NA61/SHINE	[195]	$_{\rm p+C}$	p	31	7.7
	[85]	p+p	p, \bar{p}		
NA61/SHINE	[85]	$_{\rm p+p}$	p, \bar{p}	40	8.8
Serpukhov ¹	[196, 197]	$_{\mathrm{p+p}}$	p, \bar{p}	70	11.5
	[198]	p+Be	p, p̄		
	[199]	p+Al	p, \bar{p}		
NA61/SHINE	[85]	p+p	p, p	80	12.3
CERN-NA49	[82]	p+p	p, \bar{p}	158	17.5
	[83]	$_{\rm p+C}$	p, \bar{p}		
CERN-NA61	[85]	p+p	p, p̄		
CERN-SPS ¹	[200, 201]	$_{\rm p+Be}$	p, \bar{p}	200	19.4
		p+Al	p, \bar{p}		
Fermilab ¹	[202, 203]	p+p	p, p̄	300	23.8
		$_{\rm p+Be}$	p, \bar{p}		
Fermilab ¹	[202, 203]	p+p	p, p	400	27.4
		p+Be	p, \bar{p}		
CERN-ISR	[204]	$_{\mathrm{p+p}}$	p, \bar{p}	1078	45.0
CERN-ISR	[204]	p+p	p, p	1498	53.0
CERN-LHCb	[86]	p+He	$\bar{\mathbf{p}}$	6.5×10^{3}	110
CERN-ALICE	[84]	$_{\mathrm{p+p}}$	p, \bar{p}	4.3×10^{5}	900
CERN-ALICE	[84]	p+p	p, p	2.6×10^{7}	7000


Proton and antiproton data list on p+p and p+A collisions to be compared to simulations. **D. Gomez-Coral et al. Phys. Rev. D 98, 023012 (2018) arXiv:1806.09303 [astro-ph.HE]**

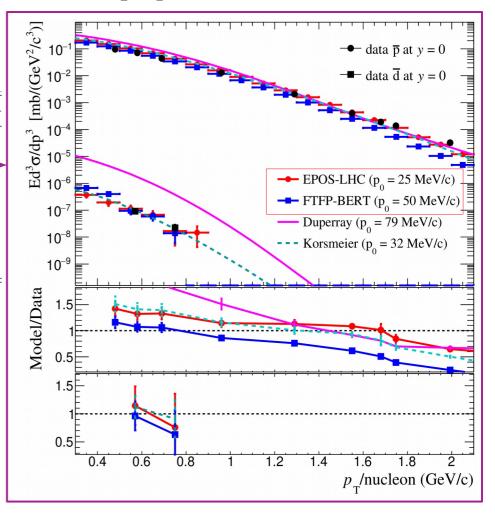


Antiproton production simulation

- Simulation is compared to data point by point.
- The most reliable MC model is selected from the comparison to data.

$$\frac{\Delta}{\epsilon_{\Delta}} = \frac{\left(E\frac{d^3\sigma}{dp^3}^{sim} - E\frac{d^3\sigma}{dp^3}^{data}\right)}{\sqrt{(\epsilon_{sim})^2 + (\epsilon_{data})^2}}$$

Antideuteron production simulation

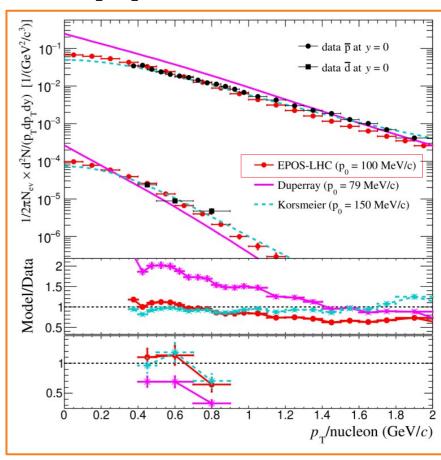

The coalescence momentum (p₀)
is determined from the fit of
simulations to data.

Experiment or	Reference	Collision	p_{lab}	\sqrt{s}	No.	of points
Laboratory			(GeV/c)	(GeV)	\overline{d}	dbar
CERN	[194]	p+p	19	6.15	6	0
CERN	[194]	$_{\mathrm{p+p}}$	24	6.8	4	0
Serpukhov	[198]	p+p	70	11.5	7	2
		$_{\mathrm{p+Be}}$			6	3
CERN-SPS	[200, 205]	$_{\mathrm{p+Be}}$	200	19.4	3	5
		p+Al			3	3
Fermilab	[203]	$_{\mathrm{p+Be}}$	300	23.8	4	1
CERN-ISR	[206, 207, 208]	g+g	1497.8	53	3	8
CERN-ALICE	[155, 209]	$_{ m p+p}$	4.3×10^{5}	900	3	3
CERN-ALICE	[155, 209, 210]	p+p	2.6×10^{7}	7000	21	20

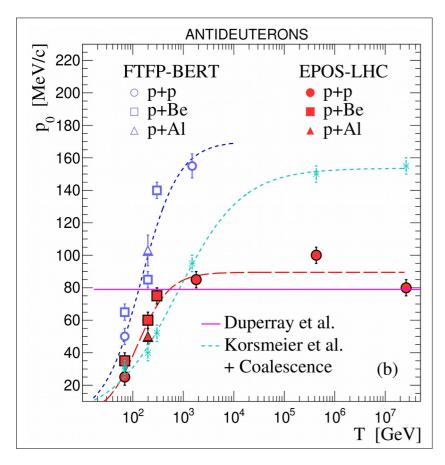
Deuteron and antideuteron data list on p+p and p+A collisions to be compared to simulations. **D. Gomez-Coral et al. Phys. Rev. D 98, 023012 (2018) arXiv:1806.09303 [astro-ph.HE]**

 $\begin{array}{c} \text{Antideuteron invariant}\\ \text{differential cross section in p+p}\\ \text{collisions at 70 GeV/c, as}\\ \text{function of p}_{\text{T}} \end{array}$

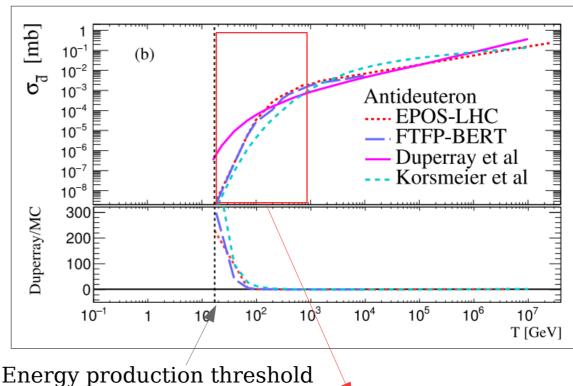
$$p+p$$
 at $\sqrt{s} = 11.5$ GeV


Antideuteron production simulation

$$p+p$$
 at $\sqrt{s} = 53$ GeV


Antideuteron invariant differential cross section as function of $p_{\scriptscriptstyle T}$ compared to ISR data.

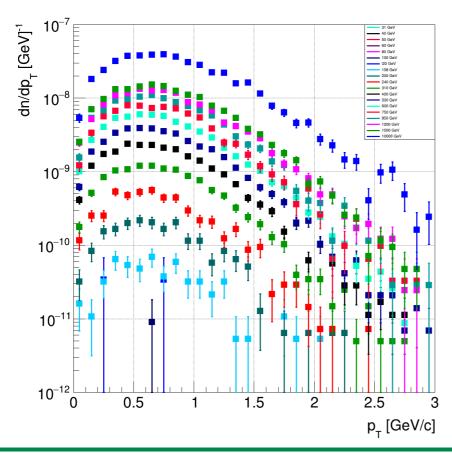
p+p at $\sqrt{s} = 900 \text{ GeV}$



Antideuteron invariant differential cross section as function of p_T compared to ALICE-LHC data.

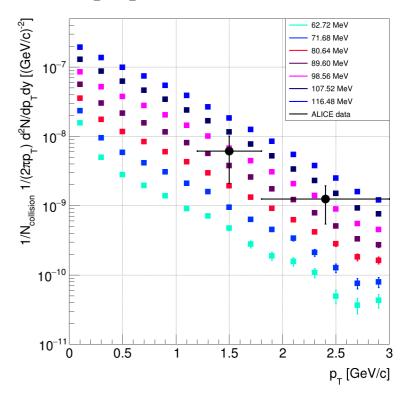
Coalescence momentum (p_0) and production cross section

 $p+p \rightarrow X + dbar$



- p₀ is parameterized as function of the projectile kinetic energy.
- p₀ is similar for p+p and p+Be collisions.

 p₀ changes in the energy region of major importance for cosmic ray production.


Antihelium production simulation

- MC coalescence is expanded to merge 3 antinucleons from p-p interactions.
- High computing power is required ~ 2000 years so far.

 Using same p₀ as for dbar shows very good agreement with ALICE antihelium-3 data

$$p+p$$
 at $\sqrt{s} = 7$ TeV

Anirvan Shukla PhD student UH

Propagation with Galprop56

$$\frac{\partial f(p,\vec{r},t)}{\partial t} = \vec{\nabla} \cdot \left(D_{xx}(p,\vec{r}) \vec{\nabla} f - \vec{V} f \right) + \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} f$$
Antideuteron source term
$$-\frac{\partial}{\partial p} \left[\dot{p} f - \frac{p}{3} (\vec{\nabla} \cdot \vec{V}) f \right] - \frac{1}{\tau_f} f - \frac{1}{\tau_r} f + q(p,\vec{r},t),$$

Set 1 DR Without convection

Z	$D_0/10^{28}$	δ	$ m V_{alf}$
[kpc]	$[cm^{2} s^{-1}]$		[km s ⁻¹]
6	4.37	0.494	7.64

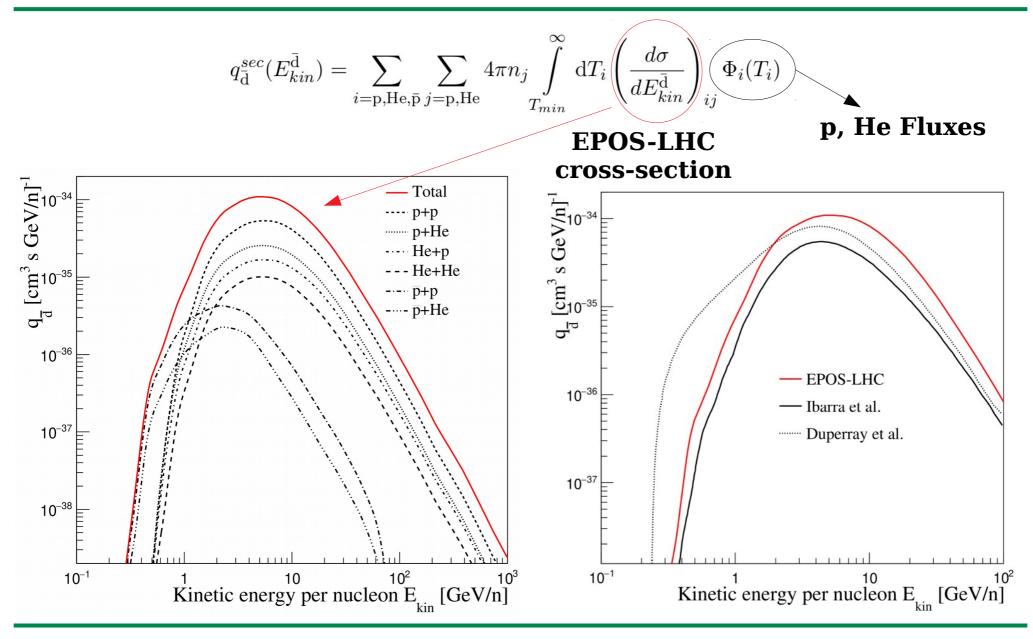
R1	R2	γ1	γ2	γ3
5.78 GV	304 GV	1.74	2.35	2.178

R1	R2	γ1	γ2	γ3
5.78 GV	304 GV	1.69	2.29	2.12

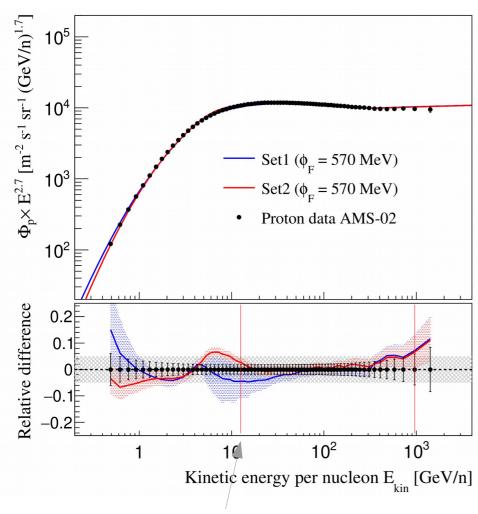
T. A. Porter et al., 2017

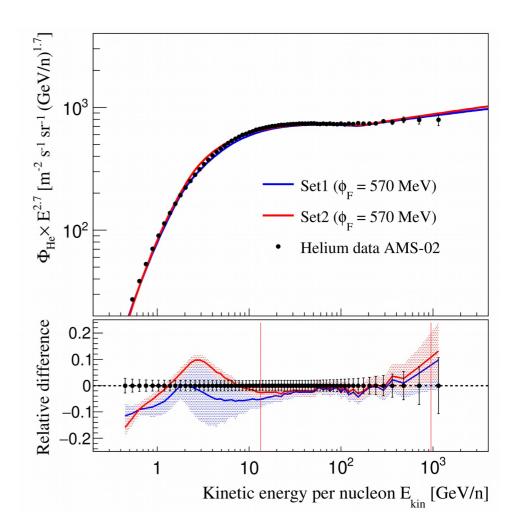
Set 2 DCR With convection

-	$D_0/10^{28}$ [cm ² s ⁻¹]	δ	V_{alf} [km s ⁻¹]		$\frac{\text{dV/dz}_{\text{conv}}}{\text{[km s}^{-1} \text{ kpc}^{-1]}}$
4	4.3	0.395	28.6	12.4	10.2

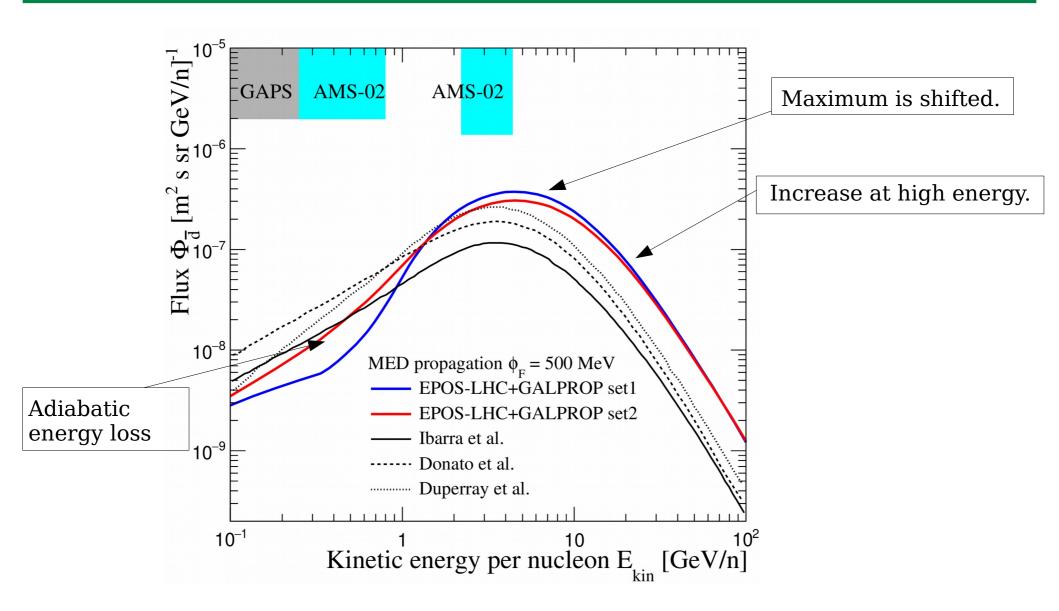

R1	R2	γ1	γ2	γ3
7 GV	360 GV	1.69	2.44	2.28

R1	R2	γ1	γ2	γ3
7 GV	330 GV	1.71	2.38	2.21


M. J. Boschini et al 2017 PoS(ICRC2017)278

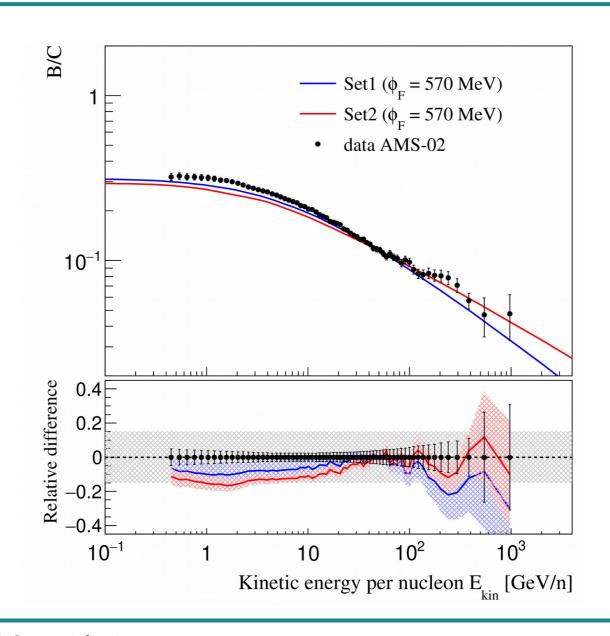

Helium Proton

Antideuteron source term

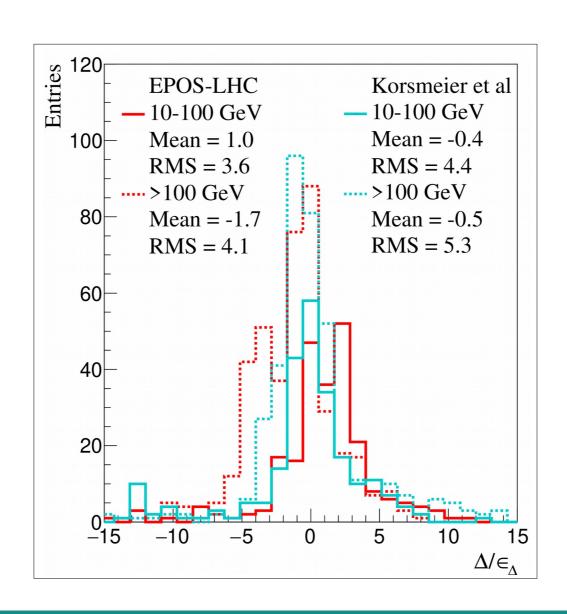

Proton and Helium fluxes

Energy production threshold

Secondary Antideuteron Flux

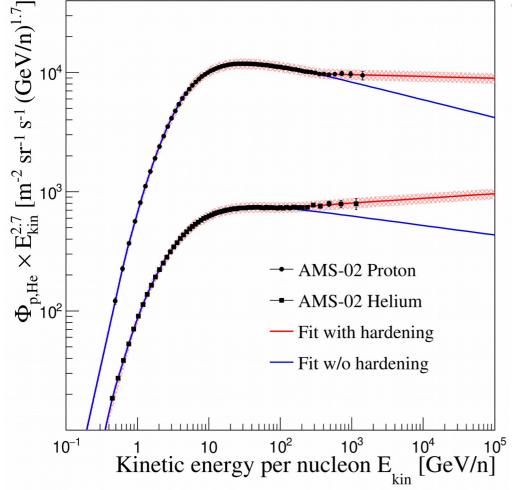


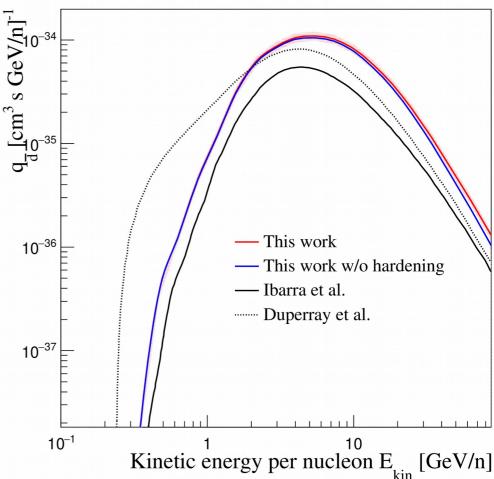
Summary


- A new study on the secondary antideuteron production was presented, using a high-energy MC generator (EPOS-LHC) and the coalescence model.
- Simulations were compared to an extensive data set, including new measurements from NA61 and ALICE-LHC to obtain the coalescence momentum (p_0) .
- From the comparison to data, it seems the coalescence momentum (p_0) depends on the collision energy. As consequence:
 - Antideuteron production cross section shows important differences with respect to previous calculations in the region of interest for CR antideuteron production.
 - Antideuteron flux shape is slightly modified and its maximum is shifted above 4 GeV/n compared to other works.
 - Antideuteron flux is higher than previous estimations but it remains below experiment expected sensitivities.

Thank you!

Boron to Carbon ratio




Antiproton production simulation

Antideuteron source term

 Proton and helium fluxes with and without hardening are inserted in the convolution.

- Hardening increases dbar flux by less than 10%
- dbar production is higher than in previous works.