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• The Generalized Spallation Model (GSM)1 is an event 
generator.
• Simulates high-energy hadron-nucleus and nucleus-nucleus collisions

• Rooted in the Cascade Exciton Model (CEM)2 and the 
Los-Alamos Quark Gluon String Model (LAQGSM)3

• Latest develops
• CEM03.03-F (2015)
• LAQGSM03.03-F_noGPL (2012)

Introduction: What is GSM?
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Introduction: What is GSM? (cont’d)
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Introduction: What is GSM? (cont’d)
• GSM predicts emission of particles ranging from neutrons and 

protons up to 28Mg fragments, excluding residual nuclei

• GSM was built using the pre-existing CEM event generator 
code
• Incorporated LAQGSM cascade for appropriate reactions
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Introduction: What is GSM? (cont’d)
• The CEM and LAQGSM in MCNPX/6 model progeny creation 

from high-energy interactions when data is not available

• Consider GSM as “CEM+LAQGSM extended”

• Generalized for…
• Incident hadron or nucleus (“projectile”)
• Incident energy
• Target nucleus
• Software client usage
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Introduction: What is GSM? (cont’d)
• Note that particle transport codes rely heavily on tracking 

progeny creation and on cross section tables

• Particle transport codes primarily use event generators to:
• Predict spallation progeny for a given collision
• Predict interaction probabilities above those tabulated
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• Applications are traditionally limited to…
• Accelerator facilities
• Medical treatments
• Space analyses

Introduction: What is GSM? (cont’d)
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Introduction: Why GSM?
• GSM motivated by an effort to deprecate the LAQGSM4

• LAQGSM written with legacy Fortran standards and is similar to CEM
• GSM demonstrated potential to deprecate the LAQGSM

• HPC compatibility for scaling and cluster computation

• Work focused on making the GSM current.
• Reduced technical debt
• Migrate to a robust software library with explicit functionality
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Introduction: Why GSM? (cont’d)
• Modernization emphasized…

• Removal of implicit variables
• Usage of modern language syntax and declarations
• Modular units of functionality
• Containerization
• Flexibility
• Portability
• Migration to an object-oriented architecture
• Robust API creation
• Object/container optimization
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Spallation Physics Overview
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Spallation Physics Overview (cont’d)
• Fast stage consists of the IntraNuclear Cascade (INC)1

• Standard and Modified Dubna Cascade Models (DCM) available

• Intermediate stage consists of a preequilibrium model5

• Equilibration of the INC process’s residual nucleus

• Compound stage models evaporation and fission of the 
compound nucleus6
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Spallation Physics Overview (cont’d)
• High energy requirements are a function of the physical 

assumptions made

• Coalescence7 of only INC progeny is also modeled
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Spallation Physics Overview (cont’d)
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Spallation Physics 
Overview (cont’d)

Spallation simulation 
flow chart of the GSM
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Spallation Physics Overview (cont’d)
• GSM utilizes the Dubna Cascade Model (DCM) for its INC 

simulations, the “fast” phase

• The DCM in GSM has two forms:
• Time-independent DCM (standard DCM [sDCM])
• Time-dependent DCM (modified DCM [mDCM])
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Spallation Physics (continued)
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Spallation Physics (continued)
• The time-independent DCM:

• Assumes the target nucleus has seven “zones” of constant 
nuclear densities and Fermi-gas energies

• Considers nucleon-nucleon, pion-nucleon, and photon-nucleon 
collisions

• Utilizes the Pauli Exclusion Principle to verify allowed INC 
end-states

20
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Spallation Physics (continued)
• The time-dependent DCM:

• Utilizes continuous nuclear densities and Fermi-gas energies for 
the target nucleus

• Considers nucleon-nucleon, pion-nucleon, and photon-nucleon 
collisions

• Utilizes the Pauli Exclusion Principle to verify allowed INC 
end-states

• Considers nuclear trawling (i.e. depletion)

21
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Spallation Physics (continued)
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Spallation Physics (continued)
• Many event generators couple the fast and intermediate 

phases of the reaction
• The residual’s equilibration is tied into the event generator’s INC 

model (such as in the INCL++)
• This may be chosen to help mitigate the effects of a “hard” 

transition from the fast to intermediate phases
• The DCM, and thus the GSM, considers an optical potential for 

the transition

23

https://www.isu.edu/
https://www.isu.edu/
https://www.isu.edu/
https://caesenergy.org/


24

Spallation Physics (continued)
• The slow phase in GSM is characterized by a coupled 

evaporation-fission model:
• The Generalized Evaporation Model (GEM) is utilized by GSM to 

characterize this process
• GEM2 utilizes many empirical subsets of data

• Fission is not modeled as releasing any neutrons

• Considers primarily decay widths for predicting particle emission
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Spallation Physics (continued)
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Spallation Physics (continued)
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Spallation Physics (continued)
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Modernization and API
• Modernization emphasized…

• Removal of implicit variables
• Usage of modern language syntax and declarations
• Modular units of functionality
• Containerization
• Flexibility
• Portability
• Migration to an object-oriented architecture
• Robust API creation
• Object/container optimization

Modernize code

Modernize 
structure

Optimization
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Code Modernization
• Prior to this work, GSM was primarily legacy Fortran code 

(i.e. Fortran66/77)

• At present, GSM and all of its sub-models, except the 
time-dependent DCM, are “modernized”

30
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Code Modernization (continued)
• “Modernization” here refers to:

• Modern syntax for current compilers (Fortran2008)
• Parameters (no data statements)
• Argument intent
• Modules
• Object-oriented framework
• Procedure pointers
• etc.

31
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Code Modernization (continued)

32

sDCM “chabs” procedure (prior)
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Code Modernization (continued)

33sDCM “chabs” procedure (post)
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Code Modernization (continued)
• Modernization here also touches on code readability

• GSM was difficult for developers to understand

• GSM previously grouped variables in a global scope via 
common blocks, each with eight or less characters 
(typically 4 or less)
• Modernization grouped them into derived types with clearly named 

members

34
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Code Modernization (continued)
• Why modernize?

• Migration from “monolithic” to modular
• Less technical debt
• Scalability
• Efficiently utilize HPC resources
• (Preliminary) parallelization

• These benefits are all HUGE!

35
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Code Modernization (continued)
• Migration to an object-oriented approach

• Creates further modulation (non-monolithic)
• Dependencies are better known

• GSM and its sub-models utilize many “container” data types
• GSM itself is a collection of sub-model objects

36
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Code Modernization (continued)
• GSM and its sub-models utilize various data types:

• I/O handler
• Simulation options (behaviors, numerics)
• Data object(s), where applicable
• Random number generator (RNG) procedure pointer (for MC methods)
• During a simulation, end-state and interim result objects are passed 

among member procedures
• Allows greater scalability and parallelization

• Construction flag (protection)
• Other physics models’ interface procedures may be utilized

• Clients may consider photon emission following particle emission
37
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Code Modernization (continued)

38Object member-variables
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Code Modernization (continued)

39Object member-procedures
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Code Modernization (continued)
• Some client benefits:

• Additional features
• Significant client control
• Simple client setup
• Highly reusable
• Highly scalable
• Highly parallel
• etc.

40
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Code Modernization (continued)
• Developer benefits:

• Fast deployment
• Introduce hotfixes and new features and improvements quickly

• Modify code without affecting client utilization

• Highly decoupled

41
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Code Modernization (continued)

42

Building and running GSM
• CMake and command line options
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API Development
• The Application Programming Interface (API) acts as the 

“contract” between the client and the object being utilized

• Provides well defined methods to utilize the object and on 
utilizing the object and all generated data

43
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API Development (continued)
• An API acts as the “seams” between a client and a model 

or server

• Flexible implementation

• Follows a service-oriented architecture (SOA)
• “Black-box” utilization, self-contained, specified focus, etc.

44
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API Development (continued)
• Provides much abstraction

• Localizes complexity

• Each object-oriented model may be its own API
• The object’s constructor and various accessible procedures 

comprise the API

45
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API Development (continued)
• The API of an object-oriented model may be easily 

consumed and tested

• The GSM API requires:
• Data initialization and construction, object construction, and then 

simulation (as needed)
• Simulation results are contained within a single object for client 

ease

46
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API 
Development 
(continued)

• GSM data 
initialization
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API Development (continued)

General GSM construction 48
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API Development (continued)

gsmResults constructor 49
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API Development (continued)

Sample API (1)
50
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API Development (continued)

Sample API (2) 51
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API Development (continued)

The “gsmProjectile” object
52

https://www.isu.edu/
https://www.isu.edu/
https://www.isu.edu/
https://caesenergy.org/


53

API Development (continued)

The “gsmTarget” object
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API Development (continued)

The “gsmResults” object 54
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API Development (continued)

The “gsmProgeny” object
55
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API Development (continued)

The “gsmResidual” object
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API Development (continued)

Public GSM procedures (1) 57
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API Development (continued)

Public GSM procedures (2) 58
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API Development (continued)

Public GSM procedures (3)

59

https://www.isu.edu/
https://www.isu.edu/
https://www.isu.edu/
https://caesenergy.org/


CASE STUDY: THE PREEQUILIBRIUM 
MODEL AND CODE

60
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Preequilibrium 
(continued)

61

• Flow chart of 
preequilibrium physics
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Preequilibrium 
(continued)

62

• The preequilibrium 
member variables
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Preequilibrium (continued)
• Preequilibrium class data types

• Similar implementation for GSM’s other sub-models
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Preequilibrium (continued)
• Preequilibrium data class (member variables and types)
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Preequilibrium (continued)
• Preequilibrium data class (member procedures)
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Preequilibrium (continued)
• Preequilibrium results object
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Preequilibrium (continued)
• Preequilibrium construction

• Note that an optional photon emission procedure pointer is not 
utilized
• GSM does not include this model, but the preequilibrium object allows 

clients to specify one
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Preequilibrium (continued)
• Usage of the preequilibrium model requires:

• Construction of a results object
• Passing in a preequilibrium residual nucleus
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Modernization and API (cont’d)
• The internal state of the object is further containerized

• Low mutability with data hiding and API
• Abstraction
• Flexibility

• Object-oriented structure easily scales with problem size and 
processing power
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Modernization and API (cont’d)
• Object-oriented structures provides a robust API

• Provides an implicit contract of what the software client can and 
cannot do

• API provides simple methods for controlling and using the 
model
• Simple setup, pre-processing, usage, and post-processing
• Creates many simple layers with simple interfaces

• Simple implementation into software clients, e.g. MCNP6, 
Geant4, etc.
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Modernization and API (cont’d)

• Currently pursuing an open-source license with LANL and ISU
• GSM may be obtained through LANL or one of its authors presently
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Model Verification (continued)
• GSM significantly reduces the technical debt of its 

predecessors, CEM and LAQGSM
• Less code to maintain and better modulation

• GSM provides significant abstraction
• Simple to add new features, controls, etc.
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Model Verification (continued)
• Conservation of mass, charge, momentum, and energy 

are checked at each event
• Momentum conservation is verified after INC simulations

• On total (default) or on average (approximation, faster) 

• Energy conservation verified after the INC stage
• Mass and charge conservation verified after INC stage and 

collision end-state
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Model Verification (continued)
• Profiling GSM can reveal where simulations differ from 

those of CEM and LAQGSM
• GSM matches the profiles of CEM and LAQGSM for neutron, 

proton, photon, pion, and some light-ion induced events
• There have been discrepancies between the timing of the 

modified DCM in GSM and in LAQGSM for heavy-ion and some 
light-ion induced events
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Code Validation
• High-level checking

• Does GSM do what it is requested of it?

• Primarily black-box regression and unit testing
• Simulation results compared to that of CEM, LAQGSM, and 

experimental data

• Note validation for EGs is considered “good” if within an 
order of magnitude

76
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Code Validation (continued)
• Recommended to improve the current CMake build 

system
• “CMake is an open-source, cross-platform family of tools 

designed to build, test and package software” (cmake.org)
• Generated Makefiles are used to build the software without 

needing to know how to build it
• Aids in portability between systems

• e.g. Linux, Mac, Windows, etc.
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Results and Analysis
• Extensible software application

• Simple setup, pre-processing, usage, and post-processing
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Results and Analysis (cont’d)10

10. Exp. Data from R. Green, R. Korteling, and K. Jackson. “Inclusive Production of Isotopically Resolved Li through Mg Fragments by 480 MeV p + Ag 
Reactions”. In: Physical Review, Part C, Nuclear Physics 29 (1984), p. 1806. DOI: 10.1103/PhysRevC.29.1806. URL: 
http://dx.doi.org/10.1103/PhysRevC.29.1806.
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Results and Analysis (cont’d)10

10. Exp. Data from R. Green, R. Korteling, and K. Jackson. “Inclusive Production of Isotopically Resolved Li through Mg Fragments by 480 MeV p + Ag 
Reactions”. In: Physical Review, Part C, Nuclear Physics 29 (1984), p. 1806. DOI: 10.1103/PhysRevC.29.1806. URL: 
http://dx.doi.org/10.1103/PhysRevC.29.1806.
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Results and Analysis (cont’d)10

10. Exp. Data from R. Green, R. Korteling, and K. Jackson. “Inclusive Production of Isotopically Resolved Li through Mg Fragments by 480 MeV p + Ag 
Reactions”. In: Physical Review, Part C, Nuclear Physics 29 (1984), p. 1806. DOI: 10.1103/PhysRevC.29.1806. URL: 
http://dx.doi.org/10.1103/PhysRevC.29.1806.
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Results and Analysis (cont’d)11

11. Exp. Data from S. Leray et al. “Spallation Neutron Production by 0.8, 1.2, and 1.6 GeV Protons on Various Targets”. In: Physical Review, Part C, Nuclear 
Physics 65 (2002), p. 044621. DOI: 10.1103/PhysRevC.65.044621. URL: http://dx.doi.org/10.1103/PhysRevC.65.044621.
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Results and Analysis (cont’d)
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Results and Analysis (cont’d)12

12. Exp. Data from J. Franz et al. “Neutron-Induced Production of Protons, Deuterons and Tritons on Copper and Bismuth”. In: Nuclear Physics, Section A 510 
(1990), p. 774. DOI: 10.1016/0375-9474(90)90360-X. URL: http://dx.doi.org/10.1016/0375-9474(90)90360-X.
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Results and Analysis (cont’d)
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Results and Analysis (cont’d)13

13. Exp. Data from J. Gosset et al. “Central Collisions of Relativistic Heavy Ions”. In: Physical Review, Part C, Nuclear Physics 16 (1977), p. 629. DOI: 10 . 1103 
/ PhysRevC . 16 . 629. URL: http://dx.doi.org/10.1103/PhysRevC.16.629.
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Results and Analysis (cont’d)
• Concisely put, GSM…

• Models the CEM regime well
• Incident protons, neutrons, pions, and photons

• Produces results like LAQGSM with more predictive power in most 
cases

• Physics could benefit from…
• An improved Coulomb barrier
• An improved Evaporation model
• Tuned parameterizations

• More validation for incident light- and heavy-ions is desired
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Results and Analysis (cont’d)
• Computation times

• As-is, varies by target size, incident energy, and simulation verbosity
• Low verbosity computation times are similar to those of legacy GSM

• Similar times to the CEM while incurring little penalty for the 
benefits of a modern object-oriented structure.

• Typically smaller than those of the LAQGSM
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Results and Analysis (cont’d)
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Summary
• The modernized GSM provides a major improvement from its 

predecessors, the CEM and the LAQGSM event generators.

• Complex physics models are abstracted and provide simple 
setup, pre-processing, usage, and post-processing to software 
clients and end-users.
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Summary (cont’d)
• GSM provides reusable and portable modular software 

components

• Improved reliability of the model

• Good predictive power for light incident particles
• Improvement to physics desired for better light- and heavy-ion 

validation
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Future Work
• Finish modernization of the GSM and its sub-models

• Further improve structure of the GSM and each object utilized

• Physics improvements

• Parallelization via OpenMP and MPI
• What are the scaling efficiencies for the GSM?
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Future Work
• Improvements to the output data

• Implementation in software clients, e.g. MCNP, Geant4, etc.
• Deprecation of the CEM and LAQGSM event generators in MCNP and 

others
• Test the GSM API robustness
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