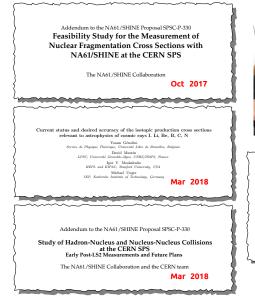

Nuclear Fragmentation Measurements with NA61/SHINE Results and Prospects M. Unger (KIT) for the NA61/SHINE Collaboration

Cosmic-Ray Related Measurements with NA61/SHINE

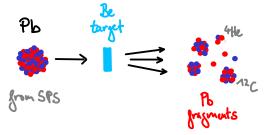

Particle Production in Air Showers

- p+C Interactions
 - (31, 60, 90 120 GeV/c)
- π+C Interactions
 (30, 60, 158, 350 GeV/c)
- Galactic Cosmic Rays
 - \bar{p} , d and \bar{d} Production (p+p at 20, 31, 40, 80, 158, 400 GeV/c)
 - Nuclear Fragmentation (C+C, C+CH₂ at 13.5 AGeV/c)

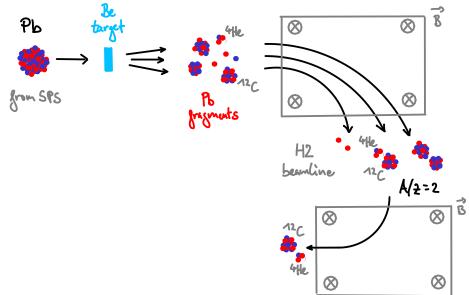
PRC 84 (2011) 034604, PRC 85 (2012) 035210, PRC 89 (2014) 025205, EPJ C74 (2014) 2794, EPJ C76 (2016) 84, EPJ C76 (2016) 198, EPJ C77 (2017) 671, EPJ C77 (2017) 626, PRD 98 (2018) 052001, PoS(ICRC2019)446

XSCRC2017: Cross sections for Cosmic Rays @ CERN

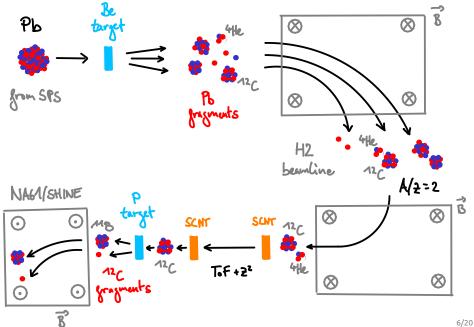
- 29 Mar 2017, 14:00 → 31 Mar 2017, 19:00 Europe/Zurich
- 9 503-1-001 Council Chamber (CERN)



New Results from the Cosmic-Ray Program of the NA61/SHINE facility at the CERN SPS


Pos

Aug 2019


Nuclear Fragmentation with SPS and NA61/SHINE

Nuclear Fragmentation with SPS and NA61/SHINE

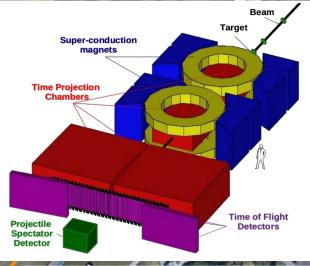
Nuclear Fragmentation with SPS and NA61/SHINE

The Super Proton Synchrotron (SPS) at CERN

Maximum Beam Momentum: $Z \times 450$ GeV/c, accelerates p, \bar{p} , O, S, Ar, Pb..

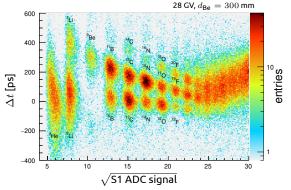
H2 Beam Line: Primary Beam, fragments, π^\pm , K $^\pm$...

A precise (2% dp/p acceptance), robust, flexible magnetic spectrometer


EHN1 Building NA61

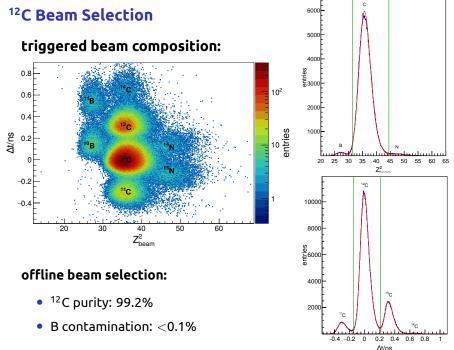
Interaction Target at NA61/SHINE (Hz, C, ...)

NA61/SHINE

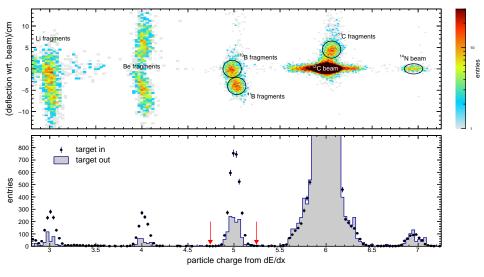

Particle Production Measurement at NA61/SHINE

- large acceptance $\approx 50\%$ at $p_T \leq 2.5 \, {\rm GeV/c}$
- momentum resolution: $\sigma(p)/p^2\approx 10^{-4}({\rm GeV/c})^{-1}$
- tracking efficiency: > 95%, pid with dE/dx and ToF

2018 Pilot Run on Nuclear Fragmentation


composition of secondary ion beam measured during data taking:

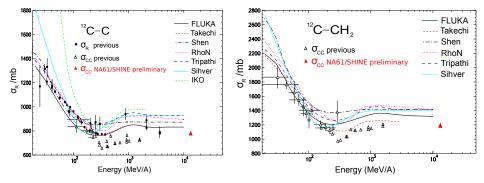
- primary Pb beam on Be target, rigidity selection in H2 beam line
- special H2 beamline optics (simulation and operation by N.Charitonidis)
- three days of data taking at 27 GV
- 1.1×10^6 beam trigger on $Z^2 = 36$
- offline selection: 3.6×10^{5} ¹²C beam particles
- 20k (¹²C+CH₂) and 17k (¹²C+¹²C) interactions


2018 Pilot Run on Nuclear Fragmentation

"C+p = (C+CH₂) - (C+C) - OUT" ~13 m CH₂-target C-target MTPC-L Vertex magnets empty target VTPC-1 VTPC-2 Beam Targets V1^pV1 V0 S1 -//-----BPD-3, MTPC-R ~240m BPD-1 BPD-2 ToF(A to S1) + dE/dx(S1) \rightarrow (A, Z²)_{beam} $\Delta + dE/dx$ (MTPC) \rightarrow (A, Z²)_{fragment}

13/20

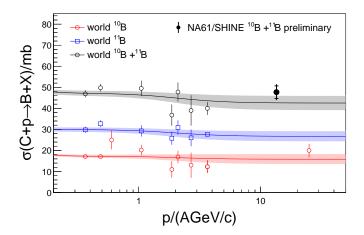
Identification of Isotopes Produced in Target (MTPC)



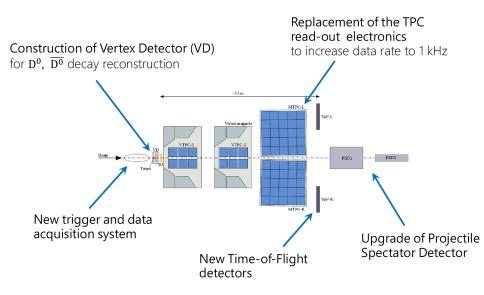
B-selection indicated by red arrows

Charge-Changing C+C & C+CH₂ Cross Section (preliminary)

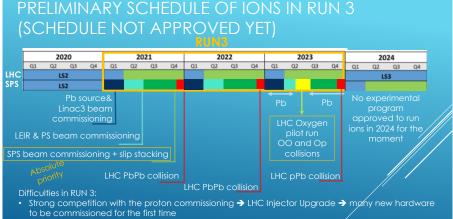
 $^{12}C+^{12}C \rightarrow (Z<6) + X$


 $^{12}C+CH_2 \rightarrow (Z<6) + X$

adapted from L. Shiver et al, Adv. Space Research **49** (2012) 812 F. Sutter, Masters Thesis KIT 2019


Direct ¹⁰B + ¹¹B Production (preliminary)

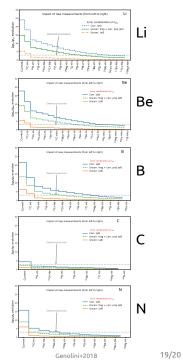
$$\begin{split} \sigma(^{12}\mathsf{C}+\mathsf{p}\rightarrow^{10}\mathsf{B}+X) + \sigma(^{12}\mathsf{C}+\mathsf{p}\rightarrow^{11}\mathsf{B}+\mathsf{X}) = \\ \mathbf{47.7} \ \pm \mathbf{3.0} \ \text{(stat.)} \ \pm \mathbf{2.3} \ \text{(syst.) mb} \end{split}$$


F. Sutter, Masters Thesis KIT 2019; NA61/SHINE PoS(ICRC2019)446, arXiv:1909.07136 Fit: Evoli+19, Data: Korejwo+02, Korejwo+99, Webber+98, Webber90, Olson+83, Fontes+77

Plans For Run3

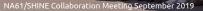
Plans For Run3

Beam request for 24 days of secondary light ion beam at 13 A GeV/c



• Strong competition with the ion commissioning towards LIU intensities → slip stacking in SPS is a priority

Reyes Fernandez, "Ion beams in 2021-2024", open session, NA61 Collab Meeting September 2019


Plans For Run3

reaction	N_{inter}	A/Z
16 O + H	250k	2
12 C + H	150k	2
16 O $+$ He	100k	2
14 N + H	40k	2
$^{10}B + H$	5k	2
$^{11}B + H$	5k	2
12 C $+$ He	5k	2
13 C + H	5k	11/5
15 N + H	5k	13/6
20 Ne $+$ H	5k	15/7
24 Mg $+$ H	5k	2
28 Si $+$ H	5k	2
7 Li $+$ H	5k	7/3
	$\sum = 0.6M$	

New Collaborators Welcome!!

- upgrade of detector
- planning of data taking
- optimization of trigger
- targets
- data analysis

