

Fission In Inverse Kinematics at GANIL

Diego Ramos

ISS Workshop

Liverpool, 27th -28th August 2019

Inverse Kinematics

Beam: ²³⁸U @ ~6 MeV/u

Inverse kinematics provide the capability of fission-fragments **nuclear-charge** identification

Coulomb energies provide low angular straggling and small Lorentz boost: good velocity resolution in CM

 $^{240}Pu (< E_x > = 10 \text{ MeV})$

Surrogate Reactions

Target: ¹²C, ⁹Be, ⁷Li (~200 μ g/cm²)

Surrogate reactions give access to exotic fissioning systems, impossible to produce through n-induced reactions

> ²³⁸U (¹²C, ¹¹B) ²³⁹Np* ²³⁸U (¹²C, ⁶He) ²⁴⁴Cm*

Surrogate reactions permit to explore the impact of the incoming channel into the final fission-fragment distributions

²³⁸U (⁹Be, ⁸Be) ²³⁹U*

Experimental Setup

Experimental Setup

fissioning system with a resolution of FWHM = 2.7 MeV

Experimental Setup

Isotopic Fission Yields

 $^{238}\text{U} + ^{12}\text{C}$

Neutron Excess

$$\frac{\langle N \rangle}{Z}(Z) = \frac{1}{Z} \sum_{N} N \frac{Y(N, Z)}{Y(Z)}$$

Post-neutron-evaporation neutron content of fragments

The charge polarization with the **increase of the neutron content around** Z~50, driven by the doubly-magic nucleus ¹³²Sn reflects structural effects at low excitation energy

Structural effects vanish at higher excitation energy

D. Ramos et al., Phys. Rev. C 99, 024615 (2019)

239**T** J

 $\langle A_1^* \rangle = A_{FS} \frac{\langle V_2 \gamma_2 \rangle}{\langle V_1 \gamma_1 \rangle + \langle V_2 \gamma_2 \rangle}$

Direct measurement disproves the Sn anomaly of ²³⁹U

8

Scission point configuration

The kinetic properties of the fragments gives scission-point information

Splits around Z~50 take place at lower elongation than more asymmetric splits but similar excitation energy

 $\langle T K E^* \rangle = u \langle A_1^* \rangle (\langle \gamma_1 \rangle - 1) + u \langle A_2^* \rangle (\langle \gamma_2 \rangle - 1)$

Perspectives

• fragment excitation energy

Gamma Calorimeter for fragment-decay measurements

Conclusions

- The use of inverse kinematics with the VAMOS spectrometer allowed the complete characterization of fissioning system in terms of Z, A, and E_x, and the isotopic identification of their full fragment distribution and their TKE.
- The correlation between N and Z reveals the effect of structure: a charge polarization with a saw-tooth behavior appears with a maximum governed by ¹³²Sn. Increasing E_x reduces this structure effect, but mainly on the heavy fragment.
- For first time the scission point configuration is accessible from the experimental point of view, measuring the neutron content and the separation of the fragments at scission.
- Further steps in the setup improvement are in mind, such as a second arm in order to measure simultaneously both fission fragments. Improvements in the detection of the target-like recoil and in the excitation energy resolution are other requirements to successfully continue the fission program at VAMOS/GANIL

Collaboration

GANIL, France

- D. Ramos, A. Lemasson, M. Rejmund, J.D. Frankland, J. Piot,
 - D. Ackermann, E. Clement, B. Jacquot, T. Roger

IGFAE, University of Santiago de Compostela, Spain

- M. Caamaño, H. Álvarez-Pol, B. Fernández-Domínguez

IPHC Strasbourg, France

- C. Schmitt

LPC Caen, France

- F. Farget, D. Durand

IPN Orsay, France

- L. Audouin

CENBG Bordeaux, France

- A. Henriques, B. Jurado, I. Tsekhanovich

LIP Lisboa, Portugal

- D. Galaviz, P. Teubig

Chalmers University of Technology, Sweden

- A. Heinz

DE COMPOSTELA

abonatoine de physique conpusculaire

ORSAY

CHALMERS

MASS FISSION YIELDS

A. Bail et al. PRC 84 (2011) 034605

T. Ohtsuki et al. PRC 40 (1989) 2144 I. Tsekhanovich et al. PRC 70 (2004) 044610

Excitation of the target-like recoil

EXOGAM detector allow us to evaluate the excitation probability of the target-like nuclei

γ-rays measurements show excited states in ¹²C, ¹¹B and ¹⁰Be in coincidence with fission with $P_{\gamma} = 0.12-0.14$

EXOGAM

C. Rodriguez-Tajes et al. PRC 89 (2014) 024614

Deformation at Scission

The CM reconstruction together with the Z,A identification permits to determine, for first time, the deformation of the fragments at Scission

$$\sum_{i=1}^{2} E_{i}^{*,int} = E^{*,Bf} + F^{dis}(TXE - E^{*,Bf})$$

 $E_i^* = Q_i^n + \nu_i \varepsilon + E_i^\gamma$

Key points: Dissipated energy = 35% (TXE-E^{*,Bf}) $E_i^{\gamma} = Sn_i^{\text{post}} \frac{\nu_i}{\nu_1 + \nu_2}$

$$E_i^{*,def} = B(\langle A \rangle_i, Z_i, \beta_i) - B(\langle A \rangle_i, Z_i, \beta_i^{g.s.})$$

²⁴⁰Pu

• The deformation at scission follows the deformed shell N=64,88 and Z=44

Excitation Energy Effect

Gates on E_x

- $\Delta < E_x > = 1 \text{MeV}$
- STD(E_x)~1.5 MeV

- Very asymmetric splits are enhanced
- Even-odd staggering gets reduced
 - Unexpected almost invariant value appears in Z=50

