The SOLARIS spectrometer

Ben Kay, Argonne National Laboratory ISOLDE Solenoidal Spectrometer Workshop, 2019

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract Number DE-AC02-06CH11357

Overview

- Direct reactions, ReA
- What is the SOLARIS spectrometer?
- The AT-TPC (and PAT-TPC, AT3PC, etc)
- SOLARIS at ReA ...
- ... status, timelines

rometer? T3PC, etc)

Direct reactions

~10 MeV/u (3-20 MeV/u), >104 pps (stable and <u>radioactive</u>)

<u>Reactions used as a tool for</u> nuclear structure and astrophysics:

- Selectively populate states, determine E, jⁿ
- Inelastic, single-nucleon, two-nucleon
- Cross sections \rightarrow rates
- Cross section → overlaps

Nuclear physics with light-ion reactions <u>~few-15 MeV/u</u>

Science drivers	from NRC RISAC		
Nuclear Astrophysics	Tests of Fundamental Symmetries	Applications of	
hing questions to be answ	vered by rare-isotope res	earch	
 What is the nature of neutron star and dense nuclear matter? What is the origin of the elements in the cosmos? What are the nuclear reactions that drive stars and stellar explosions? 	- Why is there now more matter than antimatter in the universe?	- What are new app of isotopes to mee needs of society?	
enchmarks programs to a	answer overarching ques	tions	
 6. Equation of state 7. r-Process 8. ¹⁵O(α,γ) 9. ⁵⁹Fe s-process 15. Mass surface 16. rp-Process 17. Weak interactions 	 12. Atomic electric dipole moment 15. Mass surface 17. Weak interactions 	10. Medical 11. Stewardship	
	Nuclear Astrophysics hing questions to be answ - What is the nature of neutron star and dense nuclear matter? - What is the origin of the elements in the cosmos? - What are the nuclear reactions that drive stars and stellar explosions? enchmarks programs to a 6. Equation of state 7. r-Process 8. ¹⁵ O(α,γ) 9. ⁵⁹ Fe s-process 15. Mass surface 16. rp-Process	Nuclear Astrophysics Symmetries - What is the nature of neutron star and dense nuclear matter? - Why is there now more matter than antimatter in the universe? - What is the origin of the elements in the cosmos? - What are the nuclear reactions that drive stars and stellar explosions? enchmarks programs to answer overarching quest 6. Equation of state 7. r-Process 8. 15O(0,y) 9. 59Fe s-process 15. Mass surface 16. rp-Process	

The Science of FRIB, https://www.frib.msu.edu/_files/pdfs/frib_scientific_and_technical_merit_lite_0.pdf

... RI beams

(Beam rates are very crude estimates from various sources, illustrative, likely ~1-2 orders of mag. off

ATLAS & HELIOS

An excellent combination for direct-reaction studies for nuclear structure and astrophysics

www.anl.gov/atlas www.anl.gov/atlas

ATLAS & HELIOS

An excellent combination for direct-reaction studies for nuclear structure and astrophysics

www.anl.gov/atlas www.anl.gov/atlas

https://www.anl.gov/phy/helical-orbit-spectrometer

The AT-TPC ...

... weak beams, 'complex' final states, excitation functions, pureotargets, ..., etc.

J. Bradt et al. Nucl. Instrum. Methods Phys. Res. A 875, 65 (2017)

... commissioned in style

E ^{CM}	E _x	J^{π}	Tz	S	Γ	Γ_p
(keV)	(keV)				(keV)	(keV)
$2680\pm108\pm20$	$0\pm91\pm28$	3/2-	11/2 (⁴⁷ Ar)	$0.27\pm 0.03\ ^{+0.21}_{-0.13}$	15(10)	4.3(4)
$2990{}^{+117}_{-124}\pm20$	$310^{+91}_{-92}\pm28$	$1/2^{+}$	9/2 (⁴⁷ K)	$0.027 \pm 0.006 {}^{+0.013}_{-0.007}$	30(10)	20(2)
$3280^{+125}_{-127}\pm20$	$600^{+92}_{-93}\pm28$	$1/2^{+}$	9/2 (⁴⁷ K)	$0.008 \pm 0.002 {}^{+0.005}_{-0.006}$	18(10)	8.0(8)
$3650{}^{+137}_{-147}\pm20$	$970^{+95}_{-99}\pm28$	$1/2^{-}$	11/2 (⁴⁷ Ar)	$0.42 \pm 0.05 \pm 0.09$	34(10)	24(2)

J. Bradt et al. Phys. Letts. B **778**, 155 (**2018**)

Allows for extraction of neutron spectroscopic factors, offering several advantages for studies with RI beams

... and this

PHYSICAL REVIEW LETTERS 123, 082501 (2019)

Editors' Suggestion

Direct Observation of Proton Emission in¹¹Be

Y. Ayyad,^{1,2,*} B. Olaizola,³ W. Mittig,^{2,4} G. Potel,¹ V. Zelevinsky,^{1,2,4} M. Horoi,⁵ S. Beceiro-Novo,⁴ M. Alcorta,³ C. Andreoiu,⁶ T. Ahn,⁷ M. Anholm,^{3,8} L. Atar,⁹ A. Babu,³ D. Bazin,^{2,4} N. Bernier,^{3,10} S. S. Bhattacharjee,³ M. Bowry,³ R. Caballero-Folch,³ M. Cortesi,² C. Dalitz,¹¹ E. Dunling,^{3,12} A. B. Garnsworthy,³ M. Holl,^{3,13} B. Kootte,^{3,8} K. G. Leach,¹⁴ J. S. Randhawa,² Y. Saito,^{3,10} C. Santamaria,¹⁵ P. Šiurytė,^{3,16} C. E. Svensson,⁹ R. Umashankar,³ N. Watwood,² and D. Yates^{3,10} ¹Facility for Rare Isotope Beams, Michigan State University, East Lansing, Michigan 48824, USA ²National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA

³TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada

Pre-SOLARIS activities

AT-TPC support, Al Barcikowski (ANL) and SOLARIS team

Pre-SOLARIS activities

- Consideration being given to using a JENSA-like gasjet target system inside a solenoid
- Different TPCs can be used, such as the existing AT-TPC, the PAT-TPC, and the newly designed AT3PC (active tritium target time project chamber)

January 2019

February 2019

... paperwork/emails ...

(9,000 liters of LN2, 7,000 liters of LHe ...)

ABELL-HOWE

March 2019

Status, timelines, budget

- <u>2009-2017</u>: Planning "HELIOS for FRIB"
- March 2017: SOLARIS workshop @ANL
- March 2018: White Paper
- <u>May 2018</u>: **Proposal #1 to DOE**
- <u>September 2018</u>: Prep. funds
- March 2019: Prep. done
- May 2019: Solenoid to NSCL
- June 2019-October 2020: AT-TPC inst commissioning
- <u>August 2019</u>: **Proposal #2 to DOE**

RIB" NL

		Duration	2019		20)20			20	21	
ID	Task name	(months)	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
1	SOLARIS	30									
2	Riggers (ANL)	1									
3	Trucking	1					_				
4	Riggers (NSCL)	1					Fu	nd	ed		
5	Cooling solenoid	1									
6	Ramping field tests	1									
7	Field mapping	1									
8	Solenoid stand, deck, alignment	4									
9	Spool ends, flanges	1-6									
10	AT-TPC cradle, transport, install	3		×.							
11	AT-TPC support and alignment	3									
12	AT-TPC experiments*	9+									
13	ReA beam line dev./coupling pt1	3									
14	Silicon detector procurement	18									
15	Electronics system	18									
16	Si array assembly	6									
17	DAQ development	6									
18	Install DAQ and array	6									
19	Alpha source tests	3									
20	ReA beam line coupling pt2	3									
21	Si-array mode commissioning	3									
22	Kinematic table	4									
23	Si-array table	6									
24	Target table	6									
25	Vacuum mechanical support	3									
26	Turbo system, fore pump, valves	4									
27	Vacuum instrumentation	4									
28	Control system	4									

•	ta		1
	ια		

	FY20	FY21	FY22	Total
Pre-R&D	_	_	_	_
R&D	237	_	68	305
CDR	146	_	_	146
PED	194	405	105	705
Construction	_	1180	1176	2356
Pre-Ops	_	_	105	105
TEC	194	1585	1281	3061
OPC	383	_	174	556
TPC	577	1585	1455	3617

Above: timeline and budget (as proposed)

In the context of three solenoid set ups

Various stages of HELIOS program and links to other facilities

SOLARIS at ReA, estimated beam intensities, energy limited for foreseeable future to 8 MeV/u for Pb, competition with the fast beam program

The ISOLDE Solenoidal Spectrometer, access to ISOL beams, limited operations hours, chemistry dependency, access through collaboration

08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

"The (d,p) machine" ... exploiting the simple in-flight beams

Dominantly sd-shell nuclei, over 5 years led to physics program on weak-binding, bubble-nucleus arguments, etc. Develop new techniques/ capabilities in prep. for RAISOR beams, next

generation devices

New complex reactions, gas targets, photon detection, recoil detection, new DAQ, new array LS2

CERN, HELIOS @ ISS

RAISOR

exploitation ... but this

preFRIB

time with all the tools, development of more ambitious probes, such a (d,d') on heavy systems, consider AT-TPC sharing ... the "astrophysics machine" ..., use **dual arrays**, revamp controls systems, add **beam tracking**, gas-jet target with SOLSTISE

nuCARIBU exploitation, the

definitive studies of nuclei around ¹³²Sn in terms of effective interactions, essential for informing calculations in the region, access to some astrophysically relevant cross sections

Summary

Solenoidal spectrometers, a technology pioneered at ANL in anticipation of new RI beam facilities, and active-target **TPCs**, are now established as key instruments for directreaction studies with RI beams as demonstrated by HELIOS@ANL, ISS@ISOLDE, and the AT-TPC@NSCL

Capitalizing on these two technologies, the AT-TPC and HELIOS, SOLARIS will be the ideal tool to exploit the capabilities of ReA

Acknowledgements

- The SOLARIS collaboration
- Support of PHY@ANL
- Support of Brad Sherrill and MSU/NSCL in sourcing cryogens and championing SOLARIS
- Support of the Michael Kelly of the Accelerator Development and Test Facility (ATDF) at ANL for giving us a home for the tests
- Support of the DOE for FY18 funds to test the solenoid, and for their continued support of SOLARIS

White paper available at URL, hardcopy on demand, support, collaboration welcome

