The SOLARIS spectrometer

Ben Kay, Argonne National Laboratory
 ISOLDE Solenoidal Spectrometer Workshop, 2019

Overview

- Direct reactions, ReA
- What is the SOLARIS spectrometer?
- The AT-TPC (and PAT-TPC, AT3PC, etc)
- SOLARIS at ReA ...
- ... status, timelines

Direct reactions

~10 MeV/u (3-20 MeV/u), >104 pps (stable and radioactive)
Reactions used as a tool for nuclear structure and astrophysics:

- Selectively populate states, determine $E_{,}{ }^{\boldsymbol{\pi}}$
- Inelastic, single-nucleon, two-nucleon
- Cross sections \rightarrow rates
- Cross section \rightarrow overlaps

Pairing	Occupancies	Collectivity	Vacancies	Pairing
Removinga correlated pair	Removing/ occupancy	 vibrations	Adding/ vacancy	Addinga correlated pair
$A-2$		$A+1$	A	

Nuclear physics with light-ion reactions

Science drivers from NRC RISAC
Nuclear Structure
Nuclear Astrophysic

Tests of Fundamental
Applications of Isotopes
Overarching questions to be answered by rare-isotope research

- What is the nature of the nuclear force that binds protons and neutrons into stable nuclei and rare isotopes? - What is the origin of simple patterns in complex nuclei?	- What is the nature of neutron star and dense nuclear matter? - What is the origin of the elements in the cosmos? - What are the nuclear reactions that drive stars and stellar explosions?	- Why is there now more matter than antimatter in the universe?	- What are new applications of isotopes to meet the needs of society?

17 benchmarks programs to answer overarching questions

1. Shell structure	6. Equation of state	12. Atomic electric dipole	10. Medical
2. Super heavy elements	7. r-Process	moment	11. Stewardship
3. Skins	8. 15O(a,y)	15. Mass surface	
4. Pairing	9. 59Fe s-process	17. Weak interactions	
5. Symmetries	15. Mass surface		
13. Limits of stability	16. rp-Process		
14. Weakly bound nuclei	17. Weak interactions		
15. Mass surface			

Pairing	Occupancies	Collectivity	Vacancies	Pairing
Removing a correlated pair	Removing/ occupancy	 vibrations	Adding/ vacancy	Adding a correlated pair
$A-2$				

... RI beams

~10 MeV/u (few-18 MeV/u) >100 spps

(Beam rates are very crude estimates from various sources, illustrative, likely ~1-2 orders of mag. off

ATLAS \& HELIOS

An excellent combination for direct-reaction studies for nuclear structure and astrophysics

- Stable beams at high intensity and energies up to $15 \mathrm{MeV} / \mathrm{u}$

ATLAS \& HELIOS

An excellent combination for direct-reaction studies for nuclear structure and astrophysics

Buoyed by the success of ATLAS

A highly versatile instrument

Apollo, gas target, ion chamber, backwards, forwards, tritium target, ... all

A dual-mode solenoidal spectrometer to exploit the full dynamic range of the ReA facility at FRIB

The AT-TPC ...

Highly versatile approach to studying nuclear reactions
... weak beams, 'complex' final states, excitation functions, pure targets, ..., etc.
$\sim 10^{2} \mathrm{pps}$ and above, all masses, energies

... commissioned in style

$\begin{aligned} & E_{\text {res }}^{\mathrm{CM}} \\ & (\mathrm{keV}) \end{aligned}$	$\begin{aligned} & E_{x} \\ & (\mathrm{keV}) \end{aligned}$	J^{π}	T_{z}	S	(keV)	$\begin{aligned} & \Gamma_{p} \\ & (\mathrm{keV}) \end{aligned}$
$2680 \pm 108 \pm 20$	$0 \pm 91 \pm 28$	3/2-	11/2 (${ }^{47} \mathrm{Ar}$)	$0.27 \pm 0.03{ }_{-0.13}^{+0.21}$	15(10)	4.3(4)
$2990{ }_{-124}^{+117} \pm 20$	$310{ }_{-92}^{+91} \pm 28$	$1 / 2^{+}$	9/2 (${ }^{47}$ K)	$0.027 \pm 0.006{ }_{-0.007}^{+0.013}$	30(10)	20(2)
$3280{ }_{-127}^{+125} \pm 20$	$600{ }_{-93}^{+92} \pm 28$	$1 / 2^{+}$	9/2 (${ }^{47} \mathrm{~K}$)	$0.008 \pm 0.002{ }_{-0.006}^{+0.005}$	18(10)	8.0(8)
$3650{ }_{-147}^{+137} \pm 20$	$970{ }_{-99}^{+95} \pm 28$	1/2-	$11 / 2\left({ }^{47} \mathrm{Ar}\right)$	$0.42 \pm 0.05 \pm 0.09$	34(10)	24(2)

Allows for extraction of neutron spectroscopic factors, offering several advantages for studies with RI beams

... and this

Editors' Suggestion

August 22, 2019

Direct Observation of Proton Emission in ${ }^{11}$ Be

Y. Ayyad, ${ }^{1,2, *}$ B. Olaizola, ${ }^{3}$ W. Mittig, ${ }^{2,4}$ G. Potel, ${ }^{1}$ V. Zelevinsky, ${ }^{1,2,4}$ M. Horoi, ${ }^{5}$ S. Beceiro-Novo, ${ }^{4}$ M. Alcorta, ${ }^{3}$
C. Andreoiu, ${ }^{6}$ T. Ahn, ${ }^{7}$ M. Anholm, ${ }^{3,8}$ L. Atar, ${ }^{9}$ A. Babu, ${ }^{3}$ D. Bazin, ${ }^{2,4}$ N. Bernier, ${ }^{3,10}$ S. S. Bhattacharjee, ${ }^{3}$ M. Bowry, ${ }^{3}$ R. Caballero-Folch, ${ }^{3}$ M. Cortesi, ${ }^{2}$ C. Dalitz, ${ }^{11}$ E. Dunling, ${ }^{3,12}$ A. B. Garnsworthy, ${ }^{3}$ M. Holl, ${ }^{3,13}$ B. Kootte, ${ }^{3,8}$ K. G. Leach, ${ }^{14}$ J. S. Randhawa, ${ }^{2}$ Y. Saito, ${ }^{3,10}$ C. Santamaria, ${ }^{15}$ P. Šiurytè, ${ }^{3,16}$ C. E. Svensson, ${ }^{9}$
R. Umashankar, ${ }^{3}$ N. Watwood, ${ }^{2}$ and D. Yates ${ }^{3,10}$
${ }^{1}$ Facility for Rare Isotope Beams, Michigan State University, East Lansing, Michigan 48824, USA
${ }^{2}$ National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA ${ }^{3}$ TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3, Canada

Pre-SOLARIS activities

Pre-SOLARIS activities

- Consideration being given to using a JENSA-like gasjet target system inside a solenoid
- Different TPCs can be used, such as the existing AT-TPC, the PAT-TPC, and the newly designed AT3PC (active tritium target time project chamber)

February 2019
... paperwork/emails ...

Status, timelines, budget

- 2009-2017: Planning "HELIOS for FRIB"
- March 2017: SOLARIS workshop @ ANL
- March 2018: White Paper
- May 2018: Proposal \#1 to DOE
- September 2018: Prep. funds
- March 2019: Prep. done
- May 2019: Solenoid to NSCL
- June 2019-October 2020: AT-TPC install, commissioning
- August 2019: Proposal \#2 to DOE

In the context of three solenoid set ups

Various stages of HELIOS program and links to other facilities

SOLARIS at ReA, estimated beam intensities, energy limited for foreseeable future to $8 \mathrm{MeV} / \mathrm{u}$ for Pb , competition with the fast beam program

preFRIB

The ISOLDE Solenoidal Spectrometer, access to ISOL beams, limited operations hours, chemistry dependency, access through collaboration

"The (d,p)
machine" ... exploiting the simple in-flight beams
Dominantly sd-shell nuclei, over 5 years led to physics program on weak-binding, bubble-nucleus arguments, etc.

> Develop new techniques/ capabilities in prep. for RAISOR beams, next generation devices
> New complex reactions, gas targets, photon detection, recoil detection, new $D A Q$, new array

RAISOR

 exploitation but this
time with all the tools,

 development of more ambitious probes, such a (d, d^{\prime}) on heavy systems, consider AT-TPC sharing ... the "astrophysics machine" ..., use dual arrays, re vamp controls systems, add beam tracking, gas-jet target with SOLSTISE
nuCARIBU exploitation, the

definitive studies of nuclei around
${ }^{132}$ Sn in terms of effective
interactions, essential for informing calculations in the region, access to some astrophysically relevant cross sections

Summary

Solenoidal spectrometers, a technology pioneered at ANL in anticipation of new RI beam facilities, and active-target TPCs, are now established as key instruments for directreaction studies with RI beams as demonstrated by HELIOS@ANL, ISS@ISOLDE, and the AT-TPC@NSCL

Capitalizing on these two technologies, the AT-TPC and HELIOS, SOLARIS will be the ideal tool to exploit the capabilities of ReA

Acknowledgements

- The SOLARIS collaboration
- Support of PHY @ ANL
- Support of Brad Sherrill and MSU/NSCL in sourcing cryogens and championing SOLARIS
- Support of the Michael Kelly of the Accelerator Development and Test Facility (ATDF) at ANL for giving us a home for the tests
- Support of the DOE for FY18 funds to test the solenoid, and for their continued support of SOLARIS

White paper available at URL, hardcopy on demand, support, collaboration welcome

