C. Wiesner

PE Mini Lectures #5 Introduction

18.09.2019

Mini Lectures: Proposed Topics (May 2019)

Beam & Accelerator physics	5 Wh	at types of magnets do		Magnets	
 How to describe a particle beam? Phase-space, Liouville theorem, emittance, optical functions (α, β, γ), σ 	1) we get	need? And how do we them? 3) Dipoles, quadrupoles, and more: beam-dynamics	• Bas • Bas	do superconducting acc. magnets work? sics of superconductivity sics of superconducting magnet and 4) ble design	
 How do accelerators work? Beams production: ion sources Beam transport, FODO lattice Beam acceleration: linacs and acc. cavities Beam collision: synchrotron, collider, lumin Acc. hardware: beam dump, cavities, 	2) a	and hardware realization Kicker and septa	Why • Ho • Ho	and how to protect a s.c. magnet? ow to quench a s.c. magnet? ow to protect a s.c. magnet? ow to protect a s.c. magnet? uench/damage limits	
 What can go wrong? Beam-related failures Failure classification (risk, slow/fast/ultrafast failures) Failure examples: magnet powering, injection/extraction failures, UFOs, QH firing Failure criticality for different machines 		 How does the CERN accelerator complex work? Injectors: LINACs, PSB, PS, SPS LHC operation and cycle LHC availability and faults 		 Reliability and availability 6 Basic definitions (for CERN and other accelerators) Introduction to risk assessment Lifetime distributions and bathtub 	
Hydrodynamic tunnelling LHC	stems n MP systems at (BIS, PIC, WIC, , LBDS, COLL)	opecial topics		^{curve} Reliability & Availability	
Machine Protection • Electronics for M					
ComputationalBasics of co-sinMethodsIntroduction to	nulation machine learning	actice / Object-oriented prog g ? How to simulate a magnet		eg O)	

Introduction

Where are we?

