Advanced Programming with Python

DISCLAIMER: The presented material relies heavily on Python Advance course carried out at CERN. The material is also available freely at
the website: https://www.python-course.eu (https://www.python-course.eu)

1. What is a variable
2. Basic types
e string
e enum
3. Containers
o lists
o tuples
e sets
o dictionaries
4. Functions
e arguments
e recursion
o static variables
e decorators
e generators
e context managers
5. Exception Handling
Not included:
. Object Oriented Programming
. Packaging
. Documentation
. Unit testing
. Continuous Integration

O O 0 N O

1

In 1999, Guido Van Rossum submitted a funding proposal to DARPA called "Computer Programming for Everybody", in which he further
defined his goals for Python:

e An easy and intuitive language just as powerful as major competitors
e Open source, so anyone can contribute to its development

Code that is as understandable as plain English

Suitability for everyday tasks, allowing for short development times

0. Hello world

In [1]:
print ('Hello world!")

Hello world!

0.1. Zen of Python

file:///C:/Program Files (x86)/neevia.com/docConverterPro/DEF_FOLDERS/IN/#Advanced-Programming-with-Python
https://www.python-course.eu
file:///C:/Program Files (x86)/neevia.com/docConverterPro/DEF_FOLDERS/IN/#0.-Hello-world
file:///C:/Program Files (x86)/neevia.com/docConverterPro/DEF_FOLDERS/IN/#0.1.-Zen-of-Python

In [2]:
import this
The Zen of Python, by Tim Peters

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren't special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

1. What is a variable?

Variable in python is always a reference to an object as in python everything, even a function, is an object.

In [3]
x =3
y = x
Yy, X
Out [3]
(3, 3)
In [4]
x =2
In [5]
Yy, X
Out[5]:
(3, 2)

Conditional statement to assign a value

In [6]:

x = =5
if x > 0:

label = 'Pos'
else:

label = 'Neg'
print (label)

Neg

file:///C:/Program Files (x86)/neevia.com/docConverterPro/DEF_FOLDERS/IN/#1.-What-is-a-variable?

In [7]:

x = -5

label = 'Pos' if x > 0 else 'Neg'
print (label)

Neg

In [28]:
print ('Pos' if x > 0 else 'Neg')

Neg

2. Basic types
2.1. String

Strings in python are immutable

In [14]:

string = 'My string'

string[0] = 'T'

TypeError Traceback (most recent call last)

<ipython-input-14-9cl1867d9p2ff> in
1 string = 'My string'
-——=> 2 string[0] = 'T'

TypeError: 'str' object does not support item assignment

In [15]:
string.replace ('M', 'T')
Out[15]:

'Ty string'

In [16]:
string
Out[16]:

'My string'
String is iterable
In [17]:

for s in 'My string':
print(s)

=

Q B kE B n

Formating of strings

file:///C:/Program Files (x86)/neevia.com/docConverterPro/DEF_FOLDERS/IN/#2.-Basic-types
file:///C:/Program Files (x86)/neevia.com/docConverterPro/DEF_FOLDERS/IN/#2.1.-String

In [18]:

from datetime import date
'Today is ' + str(date.today()) + '.'

Oout[18]:

'Today is 2019-11-28."

In [23]:
'Today is {} and number {}.'.format (date.today(), [1, 2, 3])
out [23]:

'Today is 2019-11-28 and number [1, 2, 3].'

f-strings have been introduced in Python 3.6

In [21]:
print (f'Today is {date.today()}"')

Today is 2019-11-28

Check if a substring is in a string

In [25]:

if 'sub' in 'substring':
print ('True')

True

There are already many built-in functions for handling strings in Python

In [29]:

dir(list)

out[29]:

[' _add ',
' class ‘',
' contains ',
' delattr ',
' delitem ',
' dir ',
' doc ',
'eq Y,
' format ',
' ge '
' getattribute ',
' getitem ',

' gt ',
' hash ',

' dadd ‘',

' dmul ',

' init ',

' init subclass ',
' diter ',

l_le_l ,

' len ',

l_lt_l ,

' mul ',

l_ne_l ,

' new ‘',

' reduce ',
' reduce ex ',
A\l

'_repr_ ,
' reversed ',
' rmul ',

'::setattr__',
' setitem ‘',
' sizeof ',
' str ',

' subclasshook ',
'append',
'clear',
'copy',
'count',
'extend',
'index"',
'insert',
'pop’,
'remove',
'reverse',
'sort']

In [26]:
dir (str)
out[26]:

[' add ',

' class ‘',

' contains ',

' delattr ',

' dir ',

' doc ',
'_eq ',

' format ',
'_ge ',

' getattribute ',
' getitem ',

' getnewargs ',
‘gt ',

' hash ',

' init ',

' init subclass ',
' diter ',

'ole ',

' len ',

‘1t Yy,
' mod ',
' mul ',
' ne ',
' new ‘',

' reduce ',
' reduce ex ',
A\l

' repr ',
' rmod ',
' rmul ',

' setattr ',
' sizeof ',
' str ',

' subclasshook ‘',
'capitalize',
'casefold',
'center',
'count',
'encode',
'endswith',
'expandtabs',
'find',
'format',
'format map',
'index"',
'isalnum',
'isalpha',
'isdecimal',
'isdigit',
'isidentifier’',
'islower',
'isnumeric',
'isprintable’,
'isspace',
'istitle"',
'isupper’',
'join',
'1just’,
'lower',
'1strip!',
'maketrans’',
'partition’,
'replace’,
'rfind',
'rindex',
'rjust’',
'rpartition’,
'rsplit',
'rstrip',
'split!',
'splitlines’,
'startswith’,
'strip’',
'swapcase',
'title',
'translate',
'upper’',
'zfill']

In [32]:
'my first sentence'.upper ()

Oout[32]:

'MY FIRST SENTENCE'

2.2. Enum

Enum is a data type which links a name to an index. They are useful to represent a closed set of options

In [33]:

from enum import Enum

class QhBrowserAction (Enum) :
QUERY BUTTON CLICKED = 1
SAVE BUTTON CLICKED = 2
DATE CHANGED = 3
QH NAME. CHANGED = 4
SLIDER MOVED = 5

a = QOhBrowserAction.DATE CHANGED
a.name, a.value

Oout[33]:

('DATE CHANGED', 3)

In [36]:

a next = QhBrowserAction (a.value+l)
a next

Out[36]:

<QhBrowserAction.QH_NAME_CHANGED: 4>

In [38]:

if a next == QhBrowserAction.QH NAME CHANGED:
print ('In state {}'.format (a next.value))

In state 4

3. Containers

Container data types in Python are dedicated to store multiple variables of a various type. The basic container types are: lists, tuples, sets,
dictionaries.

3.1. Lists

In [39]:

my list = [1, 'b', True]
my list

Oout[39]:

[1, 'b', True]
Lists are 0-indexed and elements are accessed by a square bracket

In [40]:
my list([0]
Out[40] :

1

Lists are mutable

file:///C:/Program Files (x86)/neevia.com/docConverterPro/DEF_FOLDERS/IN/#2.2.-Enum
file:///C:/Program Files (x86)/neevia.com/docConverterPro/DEF_FOLDERS/IN/#3.-Containers
file:///C:/Program Files (x86)/neevia.com/docConverterPro/DEF_FOLDERS/IN/#3.1.-Lists

In [42]:

my list[1] =0
my list

Oout[42]:

[0, 0, True]
In order to extend a list one can either append...

In [44]:

my list.append(3)
my list

Out[44]:

[0, 0, True, 3, 3]
Or simply

In [45]:
my list + [1, 'b']
Oout[45]:

[0, 0, True, 3, 3, 1, 'b']
...or append elements

In []:

my list += [3]

my list

In []:

my list = my list + [3] # One shall not do that
my list

Be careful with the last assignment, this creates a new list, so a need to perfom a copy - very inefficient for large lists.

How to append a list at the end?

In [47]:

my list.append([1, 'a'l)
my list

Out[47]:

(0, 0, True, 3, 3, 3, [1, 'a'l]
This adds a list as an element, which is not quite what we wanted.

In [58]:

my list.extend([5])
my list

Oout [58]:

0, 0, True, 3, 3, 3, [1, 'a'l, 1, 'a', 1, 'a', [1, 2], '5', 5]

In [53]:

import itertools

list2d = [[1,2,31, [4,5,61, [71, [8,9]]
merged = list (itertools.chain(*1list2d))
merged

Out [53]:

(1, 2, 31, (4, 5, 61, [7], [8, 9]]

Which one to choose in order to add elements efficiently?

https://stackoverflow.com/questions/252703/what-is-the-difference-between-pythons-list-methods-append-and-extend
(https://stackoverflow.com/questions/252703/what-is-the-difference-between-pythons-list-methods-append-and-extend)

3.1.1. List comprehension

Old-fashioned way

In [59]:

my list = []

for i in range (10):
my list.append (i)

my list

Oout [59]:
(0o, 1, 2, 3, 4, 5, 6, 7, 8, 9]

One-line list comprehension

In [75]:
abs (0.1 - (1.1-1)) < le-16
Out[75]:

True

In [65]:

my list = [1/(i+l) for i in range(10)]
my list

out[65]:

.0,
.5,
.3333333333333333,
.25,

.2,
.16666666666666666,
.14285714285714285,
.125,
.1111111111111111,
.1]

ecNeoNeoNoNoNoNeoNoNoN S

In [66]:

my list = [i for i in range(10) if i > 4]
my list

Oout [66]:
(5, 6, 7, 8, 9]

Generator comprehension

https://stackoverflow.com/questions/252703/what-is-the-difference-between-pythons-list-methods-append-and-extend
file:///C:/Program Files (x86)/neevia.com/docConverterPro/DEF_FOLDERS/IN/#3.1.1.-List-comprehension

In [76]:

x = (x**2 for x in range(10))
print (x)

<generator object <genexpr> at 0x7faceb983468>

StopIteration Traceback (most recent call last)
<ipython-input-87-92dede9f6ble> in
-——=> 1 next (x)

Stoplteration:

In [93]:

import datetime
str (datetime.datetime.now())

Oout[93]:

'2019-11-28 11:24:28.029777"

In [103]:

print (datetime.datetime.now())

for x in ((x+1)**2 for x in range (int(le7))):
X**(=1/2)

print (datetime.datetime.now())

2019-11-28 11:27:55.759043
2019-11-28 11:28:01.770323

In [104]:
print (datetime.datetime.now())
1st = [(x+]1)**2 for x in range (int (1le7))]
for x in 1Ist:
X**(=1/2)

print (datetime.datetime.now())

2019-11-28 11:28:09.839305
2019-11-28 11:28:15.530292

Generator returns values on demand - no need to create a table and than iterate over it

In [111]:

x = iter (range (10))

next (x)

Out[111]:

0

In []:

x = (x**2 for x in range(10))
list (x)

3.1.2. Filter, map, reduce

file:///C:/Program Files (x86)/neevia.com/docConverterPro/DEF_FOLDERS/IN/#3.1.2.-Filter,-map,-reduce

In [105]:

my list = [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5]
filter (lambda x: x>0, my list)

Out[105]:

<filter at 0x7face70b88d0>

Filter returns an iterable generator. Generator is a very important concept in Python!

In [106]:
for el in filter (lambda x: x>0,my list):
print (el)

1

2

3

4

5

In [112]:

list(filter (lambda x: x>0, my list))
Out[112]:

[lr 2! 3! 4, 5]

Map

In [113]:

print (my list)
list (map (lambda x: abs(x), my list))

(-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5]
Out[113]:

(5, 4, 3, 2,1, 0, 1, 2, 3, 4, 5]

Map can be applied to many lists

In [114]:

1stl = [0,1,2,3,4]
1st2 = [5,6,7,8]
list (map (lambda x, y: xty, lstl, 1lst2))

Out[114]:

[5, 7, 9, 11]

Reduce

In [115]:
sum([OI 1121 3/ 4/ 5/ 6/ 7/ 8/ 9/ 10])
Out[115]:

55

In [116]:

from functools import reduce

reduce (lambda x, y: xty, [0,1,2,3,4,5,6,7,8,9,10])

Out[lle]:

55

$0+1+...+n = \frac{n(n+1)42}$

3.1.3. Iterating over lists

In [119]:

i=20

for el in [-5, -4, -3, -2, -1, O, 1,
print (i, el)
i+=1

OO Joy Ul b W E O

lterating with index

In [118]:

for index, el in enumerate([-5, -4,
print (index, el)

0 -5
1 -4
2 -3
3 -2
4 -1
50
61
72
8 3
9 4
10 5

lterating over two (many) lists

In [120]:

letters = ['a', 'b', 'c', 'd']

numbers = [1, 2, 3, 4, 5]

for 1, n in zip(letters, numbers):
print (1, n)

Q0 oW
Bw N e

-3,

-2,

-1,

file:///C:/Program Files (x86)/neevia.com/docConverterPro/DEF_FOLDERS/IN/#3.1.3.-Iterating-over-lists

In [122]:
list (zip(letters, numbers))

Out[122]:

In [124]:
dict (zip (letters, numbers))

Out[1l24]:

In [125]:
help(zip)

Help on class zip in module builtins:

class zip(object)

| zip(iterl [,iter2 [...]]) —-—> zip object
Return a zip object whose . next () method returns a tuple where
the i-th element comes from the i-th iterable argument. The . next ()

method continues until the shortest iterable in the argument sequence
is exhausted and then it raises StopIlteration.

Methods defined here:

__getattribute (self, name, /)
Return getattr(self, name).
Implement iter (self).

new (*args, **kwargs) from builtins.type

Create and return a new object. See help(type) for accurate signature.

__next (self, /)
Implement next (self).

__reduce (...)
Return state information for pickling.

\
\
\
\
\
\
\
\
l
__iter (self, /)
\
\
\
\
\
\
\
\
\
3.1.4. Copying lists

In [126]:

(ra'y 2, 3, 4] ['a', 2, 3, 4]

In [128]:
x.copy ()
Oout[128]:

(1, 2, 3, 4]

file:///C:/Program Files (x86)/neevia.com/docConverterPro/DEF_FOLDERS/IN/#3.1.4.-Copying-lists

In [127]:

x = [1, 2, 3, 4]
y = x.copy ()
y[o] — lal
print(x, vy)

(1, 2, 3, 41 ['a', 2, 3, 4]

In [129]:

x = [[1, 'a']l, 2/ 3/ 4]

y = x.copy() # equivalent to x[:]
y[o] — lal

print(x, vy)

(1, 'a'l, 2, 3, 4] ['a', 2, 3, 4]

In [131]:

X = [[1/ 'a']l 2/ 3/ 4]

y = x.copy ()

y[0][0] = 'b'

print(x, vy)

[['b', 'a'l, 2, 3, 4] [['b', 'a'l, 2, 3, 4]

The reason for this behavior is that Python performs a shallow copy.

In [132]:

from copy import deepcopy
x = [[1l, 'a'l, 2/ 3/ 4]
y = deepcopy (x)

y[0][0] = 'b'

print(x, y)

(i1, 'a'l, 2, 3, 41 [U'b', 'a'l, 2, 3, 4]

3.1.5. Sorting lists - inplace operations

In [133]:

x = [1, 10, 2, 9, 3, 8, 4, 6, 5]
x = x.sort ()
print (x)

None
list.sort() is an inplace operation. In general, inplace operations are efficient as they do not create a new copy in memory

In [134]:

x = [1, 10, 2, 9, 3, 8, 4, 6, 5]
x.sort ()
print (x)

(1, 2, 3, 4, 5, 6, 8, 9, 10]
list.sorted does create a new variable

In [135]:

x = [1, 10, 2, 9, 3, 8, 4, 6, 5]
sorted (x)
print (x)

[1, 10, 2, 9, 3, 8, 4, 6, 5]

file:///C:/Program Files (x86)/neevia.com/docConverterPro/DEF_FOLDERS/IN/#3.1.5.-Sorting-lists---inplace-operations

In [136]:

x = [1, 10, 2, 9, 3, 8, 4, 6, 5]
x = sorted(x)
print (x)

(1, 2, 3, 4, 5, 6, 8, 9, 10]

In [137]:

x = [1, 10, 2, 9, 3, 8, 4, 6, 5]
x is sorted(x)

Out [137]:

False

How to sort in a reverted order

In [139]:

x = [1, 10, 2, 9, 3, 8, 4, 6, 5]
x.sort (reverse=True)
print (x)

[lOI 9’ 8’ 6’ 5’ 4’ 3’ 2’ l}

Sort nested lists

In [140]:

employees = [(111, 'John'), (123, 'Emily'), (232, 'David'), (100, 'Mark'), (1, 'Andrew')]
employees.sort (key=lambda x: x[0])

employees

Out[140]:

[(1, 'Andrew'), (100, 'Mark'), (111, 'John'), (123, 'Emily'), (232, 'David')]

In [141]:

employees = [(111, 'John'), (123, 'Emily'), (232, 'David'), (100, 'Mark'), (1, 'Andrew')]
employees.sort (key=lambda x: x[1])

employees

Out[141]:

[(1, 'Andrew'), (232, 'David'), (123, 'Emily'), (111, 'John'), (100, 'Mark')]

Also with reversed order

In [142]:

employees = [(111, 'John'), (123, 'Emily'), (232, 'David'), (100, 'Mark'), (1, 'Andrew')]
employees.sort (key=lambda x: x[0], reverse=True)

employees

Out[142]:

[(232, 'David'), (123, 'Emily'), (111, 'John'), (100, 'Mark'), (1, 'Andrew')]

3.1.6. List extras

file:///C:/Program Files (x86)/neevia.com/docConverterPro/DEF_FOLDERS/IN/#3.1.6.-List-extras

In [143]:

my list = 5*['a']
my list

Out[143]:

In [144]:

3 in [1,2,3,4,5]

Out[144]:
True

In [149]:
x = ['a']
y = ['a']
X =Y
Oout[149]:
True

In [150]:
x = ('a")
y = ('a")
X is y
Out[150]:
True

3.2. Tuples

Tuples, similarly to lists can stores elements of different types.

In [152]:

my tuple = (1,2,3)
my tuple

Out[152]:

1, 2, 3)

In [153]:
my tuple[0]
Out [153]:

1
Unlike the lists, tuples are immutable.

In [154]:
my tuple[0]=0

TypeError Traceback (most recent call last)
<ipython-input-154-a0c25be542d6> in
-———> 1 my tuple[0]=

TypeError: 'tuple' object does not support item assignment

file:///C:/Program Files (x86)/neevia.com/docConverterPro/DEF_FOLDERS/IN/#3.2.-Tuples

In [159]:
tuple ([1,2,3])
Out[159]:

(1, 2, 3)

3.3. Sets

Sets are immutable and contain only unique elements

In [155]:
{1,2,3,4}
Out[155]:

{1, 2, 3, 4}

In [156]:
{1,2,3,4,4}
Out[1l56]:

{1, 2, 3, 4}
So this is a neat way for obtaining unique elements in a list

In [157]:

my list = [1, 2, 3, 4, 4, 5, 5, 5]
set (my list)

Out[157]:

{1, 2, 3, 4, 5}
or a tuple

In [158]:

my tuple = (1, 2, 3, 4, 4, 5, 5, 5)
set (my tuple)

Out[158]:

{1, 2, 3, 4, 5}

One can perform set operations on sets ;-)

In [160]:
A= {1,2,3}
B = {3,4,5}

print (£'A+B={A.union(B)}")

print (f'A-B={A-B}"')

print (£'A*B={A.intersection(B)}")
print (£'A*0={A.intersection({})}")

A+B={1, 2, 3, 4, 5}
A-B={1, 2}

A*B={3}

A*0O=set ()

file:///C:/Program Files (x86)/neevia.com/docConverterPro/DEF_FOLDERS/IN/#3.3.-Sets

In [165]:

pm = {'system', 'source', 'I MEAS', 'I REF'}
signals = pm - {'system', 'source'}

signals

Out[165]:

{'I MEAS', 'I REF'}

In [174]:

for s in signals:
print(s)

I MEAS
I REF

In [175]:
help (set)

Help on class set in module builtins:

class set (object)
| set() —> new empty set object
set (iterable) -> new set object

Build an unordered collection of unique elements.
Methods defined here:

__and_ (self, value, /)
Return selfé&value.

__contains (...)
x. contains (y) <>y in x.

__eq_ (self, value, /)
Return self==value.

__ge (self, value, /)

Return self>=value.

__getattribute (self, name, /)
Return getattr(self, name).

gt (self, value, /)

Return self>value.

__iand (self, value, /)
Return selfé&=value.

__init (self, /, *args, **kwargs)
Initialize self. See help(type(self)) for accurate signature.

__ior (self, value, /)

Return self|=value.

__isub (self, value, /)
Return self-=value.

__iter (self, /)
Implement iter (self).

__ixor (self, value, /)
Return self”=value.

__le (self, value, /)

Return self<=value.

len (self, /)

Return len(self).

1t (self, value, /)

Return self<value.

__ne_ (self, value, /)

Return self!=value.

__new (*args, **kwargs) from builtins.type
Create and return a new object. See help(type) for accurate signature.

__or__ (self, value, /)

Return self|value.

__rand _(self, value, /)
Return valueé&self.

__reduce (...)
Return state information for pickling.

__repr (self, /)
Return repr (self).

ror (self, value, /)

Return value|self.

__rsub_ (self, value, /)
Return value-self.

__rxor (self, value, /)
Return value”self.

__sizeof (...)
S. sizeof () —> size of S in memory, in bytes

__sub__ (self, value, /)
Return self-value.

xor (self, value, /)

Return self”value.

add(...)
Add an element to a set.

This has no effect if the element is already present.

clear(...)
Remove all elements from this set.

copy (...)
Return a shallow copy of a set.

difference(...)
Return the difference of two or more sets as a new set.

(i.e. all elements that are in this set but not the others.)

difference update(...)
Remove all elements of another set from this set.

discard(...)
Remove an element from a set if it is a member.

If the element is not a member, do nothing.

intersection(...)
Return the intersection of two sets as a new set.

(i.e. all elements that are in both sets.)

intersection update(...)
Update a set with the intersection of itself and another.

isdisjoint(...)
Return True if two sets have a null intersection.

issubset (...)
Report whether another set contains this set.

issuperset(...)
Report whether this set contains another set.

pop (...)
Remove and return an arbitrary set element.
Raises KeyError if the set is empty.

remove (...)
Remove an element from a set; it must be a member.

If the element is not a member, raise a KeyError.

symmetric difference(...)
Return the symmetric difference of two sets as a new set.

(i.e. all elements that are in exactly one of the sets.)

symmetric difference update(...)
Update a set with the symmetric difference of itself and another.

union(...)
Return the union of sets as a new set.

(i.e. all elements that are in either set.)
update (...)

Update a set with the union of itself and others.
Data and other attributes defined here:

__hash = None

In [177]:

signals([0]

TypeError Traceback (most recent call last)
<ipython-input-177-6c9%bb69209> in
-——=> 1 signals|[0U]

TypeError: 'set' object does not support indexing

In [180]:

next (iter (signals))

Oout[180]:
'I MEAS'
In [173]:

list(signals) [0]
Out[173]:

"I MEAS'

Unpacking variables

file:///C:/Program Files (x86)/neevia.com/docConverterPro/DEF_FOLDERS/IN/#Unpacking-variables

In [182]:

first, second = [1, 2]
print (first, second)

ValueError Traceback (most recent call last)

<ipython-input-182-07dd77cb2d66> in
-———> 1 first, second = [1, 2, 3]
2 print (first, second)

ValueError: too many values to unpack (expected 2)

In [183]:

first, second = (1, 2)
print (first, second)

12

In [184]:

first, second = {1, 2}
print (first, second)

12

In [185]:

employees = [(111, 'John'), (123, 'Emily'), (232,
for employee id, employee name in employees:
print (employee id, employee name)

111 John
123 Emily
232 David
100 Mark
1 Andrew

3.4. Dictionaries

In [186]:

empty set = {}
type (empty set)

Out[186]:

dict

In [187]:

empty set = set()
type (empty set)

Oout[187]:

set

In [188]:

my dict = {'a': 1, 'b': 2, 'c': 3, 'd': 4}
my dict

Out[188]:

'David'),

(100,

'Mark'"),

(1,

'Andrew')]

file:///C:/Program Files (x86)/neevia.com/docConverterPro/DEF_FOLDERS/IN/#3.4.-Dictionaries

In [189]:

my dict['a']

Oout[189]:

1

In [190]:

for key in my dict:
print (key)

a

b

c

d

In [191]:

for key, value in my dict.items():
print (key, value)

Q.0 0w
S w e

4. Functions

In []:

lambda functions
f = lambda x: x**2
£(2)

In []:

def f(x):
return x**2
£(2)

4.1. Arguments

In []:

def f(a, b, *, c):
return atb+tc

£(1,2,3)

In []:

f£(1,2,c=3)

In []:

def f (*args):
return args[0O]+args|[l]+args[2]
(1, 2, 3)

In []:

def f (**kwargs):
return kwargs['a'] + kwargs['b']
f(a=1l, b=2, c=3)

file:///C:/Program Files (x86)/neevia.com/docConverterPro/DEF_FOLDERS/IN/#4.-Functions
file:///C:/Program Files (x86)/neevia.com/docConverterPro/DEF_FOLDERS/IN/#4.1.-Arguments

A function passed as an argument

In []:

def f(x):
return x**2

def g(func, x):
return func (x)

g(f,2)

A function can return multiple values, in fact it returns a tuple

In []:
def f():
return 'a', 'b’
£0)
In []:

first, second = f()
print (first)
print (second)

4.2. Recursion

In []:

def factorial (n):
if n ==
return 1
else:
return n*factorial (n-1)

factorial (3)

In []:

factorial (-1)

In []:

def factorial (n):
if type(n) is not int or n <= 0O:
raise Exception ("Argument is not an integer")

if n == 1:
return 1
else:
return n*factorial (n-1)
factorial (5)

In []:

factorial (-1)

file:///C:/Program Files (x86)/neevia.com/docConverterPro/DEF_FOLDERS/IN/#4.2.-Recursion

In []:

Fibonacci
def fib(n):
if n =
return 0
elif n ==
return 1
else:
return fib(n-1) + fib(n-2)
[fib(i) for i in range (6)]

How many times do we calculate fib(3)?

In []:
arguments = []
def fib(n):
arguments.append (n)
if n =
return 0
elif n ==
return 1
else:
return fib(n-1) + fib(n-2)
x = [fib(i) for i in range(6)]
print (x)
In []:

counts = {i: arguments.count (i) for i in range (max (arguments)+1) }
counts

In []:

sum (counts.values ())

4.3. Memoization

In computing, memoization or memoisation is an optimization technique used primarily to speed up computer programs by storing the results
of expensive function calls and returning the cached result when the same inputs occur again.

source: https://en.wikipedia.org/wiki/Memoization (https://en.wikipedia.org/wiki/Memoization)

In []:

Memoization for Fibonacci
Fibonacci
memo = {0:0, 1:1}
arguments = []
def fib(n):
arguments.append (n)
if n not in memo:
memo[n] = fib(n-1) + fib(n-2)
return memo [n]
[fib(i) for i in range (6)]

In []:
counts = {i: arguments.count (i) for i in range (max (arguments)+1) }
counts
In []:

sum (counts.values())

file:///C:/Program Files (x86)/neevia.com/docConverterPro/DEF_FOLDERS/IN/#4.3.-Memoization
https://en.wikipedia.org/wiki/Memoization

4.5. Decorators

Decorators are functions dedicated to enhance functionality of a given function, e.g., check parameter inputs, format input

In []:

def argument test natural number (f) :
def helper (x):
if type(x) is int and x > O:
return f (xX)
else:
raise Exception ("Argument is not an integer")
return helper

def factorial (n):
if n ==
return 1
else:
return n*factorial (n-1)

factorial = argument test natural number (factorial)
factorial (3)

In []:

factorial (-1)

In []:

def argument test natural number (f):
def helper (x) :
if type(x) is int and x > 0:
return f (x)
else:
raise Exception ("Argument is not an integer")
return helper

@argument test natural number
def factorial(n):
if n == 1:
return 1
else:
return n*factorial (n-1)

factorial (3)

In []:

factorial (-1)

In []:

def sum aritmetic series(n):
return n* (n+l) /2
sum aritmetic series(2)

In []:

sum aritmetic series(1.5)

In []:

@argument test natural number

def sum aritmetic series(n):
return n* (n-1)/2

sum aritmetic series(2)

file:///C:/Program Files (x86)/neevia.com/docConverterPro/DEF_FOLDERS/IN/#4.5.-Decorators

In []:

sum aritmetic series(1.5)
Fixing the Fibonacci series

In []:

def memoize (f) :
memo = {}
def helper (n):
if n not in memo:
memo [n] = f(n)
return memo [n]
return helper

arguments = []
@memoize
def fib(n):
arguments.append (n)
if n =
return 0
elif n ==
return 1
else:
return fib(n-1) + fib(n-2)
[fib(i) for i in range (6)]

In []:
counts = {i: arguments.count (i) for i in range (max (arguments)+1) }
counts

In []:

sum (counts.values())
There is a built-in cache decorator

In []:

built-in least-recently used cache decorator
import functools
@functools.lru cache (maxsize=128, typed=False)
def fib(n):
if n < 2:
return
else:
return fib(n-1) + fib(n-2)

4.4. Static variables

file:///C:/Program Files (x86)/neevia.com/docConverterPro/DEF_FOLDERS/IN/#4.4.-Static-variables

In [1:

Exercise
- write a decorator counting the number of times a function was called
— the same but for a varying number of parameters and keyword-arguments

def counter (func) :
first define function
def helper(x, *args, **kwargs):
helper.count += 1
return func(x, *args, **kwargs) # return function as it is
then, define an attribute to be incremented with every call
this attribute behaves like a static variable
helper exist only after the function definition. Once defined, then we can attach an attribute
helper.count = 0

return helper

@counter
def fun (x):
return x

fun (1)
fun (2)
fun (3)
fun.count

4.6. Generators

In []:

s = "Python"

itero = iter(s)

itero

what I write is:

for char in s:

what python does:

for char in iter(s)

in fact it is a while loop until stop is reached

S H W R K

In []:

next (itero)

In [1:

next (itero)

In []:

next (itero)

In [1:

next (itero)

In []:

next (itero)

In [1:

next (itero)

In []:

next (itero)

file:///C:/Program Files (x86)/neevia.com/docConverterPro/DEF_FOLDERS/IN/#4.6.-Generators

Own generator

In [1:

def abc generator () :

yield "a"
yield "b"
yield "c"

x = abc generator() # we call like a function. A function returns an object

for i in x:
print (i)

In [1:

print (next (x)) <-- yield "a'

print (next (x)) <-— yield "b"

print (next (x)) <-- yield "c"

this is a co-process. This function creates a code waiting to be executed, when we assign x = abc _generator(
)

after it reaches a yield, it returns value and stops. Then next is positioned fter the yield.x
x = abc generator ()

print (next (x))

print (next (x))

print (next (x))

print (next (x))

A function is also a single-value generator

In []:

def abc generator() :
return "a"
X = abc generator ()
for i in x:
print (i)
works, because the returned value is iterable

In [1:

type (abc generator())

In []:

def abc generator() :
for char in ["a", "b", "c"]:

yield char
for i in abc generator() :
print (i)

In [1:

type (abc generator())

In []:

Generate a pi value
#pi/4=1-1/3+1/5-1/7

def pi series():
sum = 0
i 1.0
3 1
while True:
sum = sum + j/i
yield 4*sum
i=1i+2
j=3*-1
runs forever
we can break with a counter, but it is not a good idea
for i in pi series():
print (i)

In []:

def firstn(g, n):
for i in range(n):
yield next (g)

print (list (firstn(pi series(), 8)))

4.7. Context Manager

Is used to allocate and release some sort of resource when we need it.
Which means that before we start a block we open e.g. a file, and when we are going out, the file is automatically released.
If we don't close, it remains open in a file system. Closing a program, it would close. A good practice is to always close.

With context managers, the benefit is no need to close.
The issue is with the exceptions. With with, the exception is caught and handled.
Context manager is a general concept. The concept is as follows.

with device() :

before:
1. check device
2. start device

we enter the block:
1. we do something

after:
1. we execute stop block

in case of exceptions we are sure that the after part will be executed.

In []:

import csv

with open ('example.txt', 'w') as out:
csv out = csv.writer (out)
csv:out.writerow(['date', '# events'])

file:///C:/Program Files (x86)/neevia.com/docConverterPro/DEF_FOLDERS/IN/#4.7.-Context-Manager

In []:

from contextlib import contextmanager

@contextmanager
def device() :
print ("Check device")
device state = True
print ("Start device")
yield device state # the block after with is executed
print ("Stop device")

with device () as state:
print ("State is ", state)
print ("Device is running!")

5. Exception handling

Exception handling
It is easier to ask for forgiveness than for permission
E.g.

if fileexisits(file name) :
txt = open(file name) .read()

We first check if the file exists, then in the next step we fetch the file - two operations (asking for permission)
We can try to read, if it is there we are good, otherwise it raises an exception - single operation (asking for forgiveness)

try:
txt = open(file name)
except Exception as e:
txt = ""

In []:

while True:
try:
x = int (input ("Please enter a number: "))
break
except ValueError as err:

print ("Error message: ", err)
print ("No valid number. Try again")

try:
some code
except ZeroDivisionError:
some code
there could be a raise here
except FooError:
some code
except BarError:
some code
finally:
some code executed always

file:///C:/Program Files (x86)/neevia.com/docConverterPro/DEF_FOLDERS/IN/#5.-Exception-handling

In []:

Finally is executed always
try:
x = float (input ("Your number: "))
inverse = 10/x
except ValueError as err:
print ("Error message: ", err)
print ("No valid number. Try again'")
finally:
print ("There may or may not have been an exception.")
print ("The inverse: ", inverse)

In []:
assert
x =5

y =6

assert x < y, "x has to be smaller than y"

