Prospects on future energy frontier colliders

Brief overview of talks and discussions in CERN Council Open Symposium on the Update of European Strategy for Particle Physics

13-16 May 2019 - Granada, Spain

Alexander Kupčo
Institute of Physics of Czech Academy of Sciences

Meeting of Particle Physics Czech and Slovak community

May 2019, Prague
EPPSU 2019 meeting

- https://cafpe.ugr.es/eppsu2019/

- Input for this talk
 - C. Biscardi: *Accelerator Summary* + talks in parallel sessions
 - F. Gianotti: *Implementation of the 2013 European Strategy Update*
 - G. Taylor: *Perspective on the European Strategy from Asia*

- Submitted input documents
Accelerators summary

Caterina Biscari and Lenny Rivkin, Phil Burrows, Frank Zimmermann
Open Symposium towards updating the European Strategy for Particle Physics
May 13-16, 2019, Granada, Spain
Q1: What is the best implementation for a Higgs factory?
Choice and challenges for accelerator technology: linear vs. circular?
All new high-energy colliders are also higgs factories

- Cannot cover them all in detail, so focus on some

- Electron-positron colliders
 - Linear colliders
 - ILC and CLIC
 - Circular colliders
 - FCC-ee and CepC
 - (LEP 3)

- Hadron colliders
 - LHC, HL-LHC, HE-LHC, FCC-hh and SppC

- Lepton-hadron colliders
 - LHeC and FCC-eh

- Muon colliders
- Plasma colliders

- LEP3 and “Low-field” magnets in FCC tunnel

One in Europe, one in Asia

Happens in any case

Not mature enough at this moment
More R&D needed
Muon colliders could come in if we fail to have another higgs factory
Rationales

CLIC:
Ultimate goal: Achieve multi-TeV electron-positron collisions
• Linear collider with high gradient normal-conducting acceleration
• Overcome the challenges with technologies
• Now: do it in stages for physics and funding

FCC-hh + FCC-ee
Push the energy frontier with protons
• Large ring with high field magnets
Use the FCC-hh tunnel for an electron-positron collider
• The layout and cost is not optimised for FCC-ee proper

ILC:
Ultimate goal: Reach energies of originally 0.5-1 TeV
• Use high gradient superconducting technology
• Now reduce cost to obtain funding

CEPC:
Build a higgs factory with limited energy with a tunnel that could house a hadron collider afterwards

LHeC:
Expand the LHC programme with limited cost
Comparisons

<table>
<thead>
<tr>
<th>Project</th>
<th>Type</th>
<th>Energy [TeV]</th>
<th>Int. Lumi. [a^{-1}]</th>
<th>Oper. Time [y]</th>
<th>Power [MW]</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILC</td>
<td>ee</td>
<td>0.25</td>
<td>2</td>
<td>11</td>
<td>129 (upgr. 150-200)</td>
<td>4.8-5.3 GILCU + upgrade</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5</td>
<td>4</td>
<td>10</td>
<td>163 (204)</td>
<td>7.8 GILCU</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.0</td>
<td></td>
<td></td>
<td>300</td>
<td>?</td>
</tr>
<tr>
<td>CLIC</td>
<td>ee</td>
<td>0.38</td>
<td>1</td>
<td>8</td>
<td>168</td>
<td>5.9 GCHF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5</td>
<td>2.5</td>
<td>7</td>
<td>(370)</td>
<td>+5.1 GCHF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>(590)</td>
<td>+7.3 GCHF</td>
</tr>
<tr>
<td>CEPC</td>
<td>ee</td>
<td>0.091+0.16</td>
<td>16+2.6</td>
<td></td>
<td>149</td>
<td>5 G$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.24</td>
<td>5.6</td>
<td>7</td>
<td>266</td>
<td></td>
</tr>
<tr>
<td>FCC-ee</td>
<td>ee</td>
<td>0.091+0.16</td>
<td>150+10</td>
<td>4+1</td>
<td>259</td>
<td>10.5 GCHF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.24</td>
<td>5</td>
<td>3</td>
<td>282</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.365 (+0.35)</td>
<td>1.5 (+0.2)</td>
<td>4 (+1)</td>
<td>340</td>
<td>+1.1 GCHF</td>
</tr>
<tr>
<td>LHeC</td>
<td>ep</td>
<td>60 / 7000</td>
<td>1</td>
<td>12</td>
<td>(+100)</td>
<td>1.75 GCHF</td>
</tr>
<tr>
<td>FCC-hh</td>
<td>pp</td>
<td>100</td>
<td>30</td>
<td>25</td>
<td>580 (550)</td>
<td>17 GCHF (+7 GCHF)</td>
</tr>
<tr>
<td>HE-LHC</td>
<td>pp</td>
<td>27</td>
<td>20</td>
<td>20</td>
<td></td>
<td>7.2 GCHF</td>
</tr>
</tbody>
</table>

Annual energy consumption [TWh]
CERN today: 1.2 TWh

0.8
1.7
2.8
1.9
4
Proposed Schedules

<table>
<thead>
<tr>
<th>Project</th>
<th>Start construction</th>
<th>Start Physics (higgs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEPC</td>
<td>2022</td>
<td>2030</td>
</tr>
<tr>
<td>ILC</td>
<td>2024</td>
<td>2033</td>
</tr>
<tr>
<td>CLIC</td>
<td>2026</td>
<td>2035</td>
</tr>
<tr>
<td>FCC-ee</td>
<td>2029</td>
<td>2039 (2044)</td>
</tr>
<tr>
<td>LHeC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Proposed dates from projects

Would expect that technically required time to start construction is $O(5-10$ years) for prototyping etc.
Luminosity

The typical higgs factory energies are close to the cross over in luminosity
Linear collider have polarised beams (80% e⁻, ILC also 30% e⁺) and beamstrahlung
• All included in the physics studies
The picture is much clearer at lower or higher energies

Energy dependence:

At low energies circular colliders trump
• Reduction at high energy due to synchrotron radiation

At high energies linear colliders excel
• Luminosity per beam power roughly constant

δE/E ~1.5% in ILC
• Grows with E: 40% of CLIC lumi 1% off
Luminosity Challenge

Luminosity cannot be fully demonstrated before the project implementation
• Luminosity is a feature of the facility not the individual technologies
• Have to rely on experiences, theory and simulations
• Foresee margins

FCC-ee and CEPC are based on experience from LEP, DAPHNE, KEKB, PEP II, superKEKB, …
• Gives confidence that we understand performance challenges
• New beam physics occurs in the designs,
 • e.g. beamstrahlung is unique feature of FCC-ee and CEPC
 • Identified and anticipated in the design, should be able to trust simulations
• The technologies required are improved versions of those from other facilities

Linear colliders are based on experiences from SLC, FELs, light sources, …
• Gives confidence that we understand the performance challenges
• Gives us confidence that we can do better than SLC
• Still performance goal more ambitious, e.g. beam size of nm scale
 • Creates additional challenges and requires additional technologies, e.g. stabilisation
• A part of the technologies are improved versions of those from other facilities
• Some had to be purpose-developed for linear colliders

All studies prioritised their work because of limited resources
• Depending on your preference you will see holes in any of them that you find are unacceptable
• Or you will be convinced that this very issue is a mere detail …
Conclusion

• Four main proposals for higgs factories exist
 - ILC, CLIC, FCC-ee and CEPC
 - FCC-hh and HE-LHC need time for technology development (see Yamamoto’s talk)
 - LHeC would also produce some higgs
 - No clear proposal for options like LEP3 or low field magnets in FCC-tunnel
 - Muon and plasma-based colliders will need more time to become realistic alternatives

• No feasibility issue is known for any of the proposed higgs factories CLIC, ILC, FCC-ee and CEPC
 - More work has to be done for each of them to ensure performance goal is met
 - Should review in detail them before commitment is made
 - In all cases need several years before construction could start
 - Currently, technology can not help with the choice of the next project

• Cost are high in all
 - 5.9 GCHF for 380 GeV CLIC, 5.3 GILCU for ILC, 11.6 GCHF for FCC-ee, 5 G$ for CEPC

• Physics potential and strategy should be the governing principles
Q2: Path towards the highest energies: how to achieve the ultimate performance (including new acceleration techniques)?
Overview of CLIC and ILC parameters

<table>
<thead>
<tr>
<th>CLIC illustrations</th>
<th>CLIC parameters</th>
<th>ILC parameters</th>
</tr>
</thead>
</table>
| ![CLIC illustrations](image) | **E:** 380, 1500, 3000 GeV (L: 11-50 km)
Lum: 1.5-5.9 \(10^{34} \text{ cm}^{-2} \text{s}^{-1}\) *
Prep. phase 2020-2025
Constr.+comm. 7y, ready before 2035
Cost: CLIC-380: 5.9 BCHF,
Upgrades: deltas of 5 and 7 BCHF
Power: \(\sim 170 \text{ MW} - 580 \text{ MW}\)** | **E:** 250, 500, 1000 GeV (L: 20-40 km)
Lum: 1.35 (2.7) – 1.8(3.6) \(10^{34} \text{ cm}^{-2} \text{s}^{-1}\) *
Prep. phase 2020-2023(4)
Constr.+comm. 9-10y, ready before 2035
Cost: ILC-250: 4.9-5.3 BILCU,
ILC-500: 8 BILCU (2012 $)
Power: \(\sim 130 – 300 \text{ MW}\)** |

CLIC y: 75% of 180 days

- NCRF X-band now established and industrially available, used in small systems and being introduced in larger ones, relevant reference experience with C-band for larger systems (Swissfel).
- SCRF in extensive use in several FELs with parameters close to ILC parameters, the primary one being the E-XFEL at DESY. Technology optimization underway, linking to evolving SCRF R&D for grad. and Q.
- Nanobeam addressed in design & specifications, benchmarked simulations, low emittance ring progress, extensive prototype and method development (for alignment, stabilization, instrumentation, algorithms and feedback systems, system and facility tests: FACET, light-sources, FELs, ATF2)
- Extensive prototyping of all parts of these accelerators, for lab-test, use/test in test-facilities, light-sources or FELs (magnets, instrumentation, controls, vacuum, etc)

ILC y: 75% of 240 days

- CERN hosted international project (follow LHC model)
- Japan hosted international project, initial ideas about European capabilities available [link](#)
FCC integrated project technical schedule

Project preparation & administrative processes Funding & governance strategy
Geological investigations, infrastructure detailed design and tendering preparation
FCC-ee accelerator R&D and technical design
Detector R&D and concept development
Superconducting wire and high-field magnet R&D

FCC-ee detector technical design, collaborations
FCC-ee detector construction, installation, commissioning
SC wire and 16 T magnet R&D, model magnets, prototypes, preseries
16 T dipole magnet series production

15 years operation
Update Permission, Funding
FCC-ee dismantling, CE & infrastructure adaptations FCC-hh

FCC integrated project is fully aligned with HL-LHC exploitation and provides for seamless continuation of HEP in Europe with highest performance EW factory followed by highest energy hadron collider.
Consideration on timeline:
LHC possible because SSC developed the superconductor...

9 T - 1 m single bore
10 T-1m Nb3Sn dipole 9 T -10 m long prototype 9 T-15 m final prototype Last LHC dipole

Only 2 y to make a short magnet «near to final». Conductor available (SSC)

12 y from first working prototype to last magnet

Industry contracts Nb-Ti

Decision for Nb-Ti

7 years from start R&D to 1st Industry proto

LHC start-up

L.Rossi - LHC future @ Open symposium EUSPP - Granada May 2019-SUMMARY
HE-LHC 27 TeV

• Needs some 1700 large magnets in Nb₃Sn (1200 dipole 15 m long) operating at 16 T. (same as FCC-hh)

• It needs a new generation of Nb₃Sn, beyond HiLumi (like FCC-hh): the 23 y timeline presented is realistic (21 for the magnets) but t₀ is probably 2025 or more because of SC development.

• The set up of a SC Open Lab for fostering development of superconductors (F. Bordry and L. Bottura proposal) is critical for HEP HC progress.

• A further upgrade to 42 TeV in HTS at 25 T possible to envisage for longer time. 24 T dipole is the long term goal also of the Chinese SppC. (Recently an HTS 32 T special solenoid and a commercial HTS 26 T NMR solenoid have been announced!)
s.c. magnet technology

• **Nb$_3$Sn** superconducting magnet technology for hadron colliders, still requires **step-by-step** development to reach **14, 15, and 16 T**.

• It would require the following **time-line** (in my personal view):

 • **Nb$_3$Sn, 12~14 T**: 5~10 years for short-model R&D, and the following 5~10 years for prototype/pre-series with industry. It will result in **10 – 20 yrs** for the construction to start,

 • **Nb$_3$Sn, 14~16 T**: 10-15 years for short-model R&D, and the following 10 ~ 15 years for prototype/pre-series with industry. It will result in **20 – 30 yrs** for the construction to start, (consistently to the FCC-integral time line).

 • **NbTi, 8~9 T**: proven by LHC and **Nb$_3$Sn, 10 ~ 11 T** being demonstrated. It may be feasible for the construction to begin in **> ~ 5 years**.

• **Continuing R&D effort** for high-field magnet, present to future, should be critically **important**, to realize highest energy frontier hadron accelerators in future.
In LHC, 14 T dipoles give 23.5 TeV. But timeline is NOT the same.

12 T Nb₃Sn dipoles

HiLumi technology in LHC: 21 TeV c.o.m.

7 T Nb-Ti dipole (low cost LHC, 4.2 K): 44 TeV c.o.m. (100 km)
Key facts:

1/100 luminosity requirements (large cross-section in s-channel)

Half the energy $2 \times 63 \text{ GeV} \, \mu^+\mu^- \rightarrow H_0$

Small footprint (<10 km) and low cost

Small(est) energy spread $\sim 3 \text{ MeV}$

Total site power $\sim 200 \text{ MW}$ (tbd)
High Energy $\mu+\mu$- Colliders

Advantages:

- μ’s do not radiate / no beamstrahlung \rightarrow acceleration in rings \rightarrow **low cost** & great power efficiency
- $\sim x7$ energy reach vs pp

Offer “moderately conservative - moderately innovative” path to cost affordable energy frontier colliders:

- US MAP feasibility studies were very successful \rightarrow MCs can be built with present day SC magnets and RF; there is a well-defined path forward
- ZDRs exist for 1.5 TeV, 3 TeV, 6 TeV and 14 TeV * in the LHC tunnel

Key to success:

- Test facility to demonstrate performance implications - muon production and 6D cooling, study LEMMA $e^+\sim 45$ GeV $+$ e^- at rest $\rightarrow \mu^+-\mu^-$, design study of acceleration, detector background and neutrino radiation

$M_{\text{NewPhysics}} = \sqrt{s}/2$

\[\sigma_{pp}(Q\bar{Q}) \sim \sigma_{p\mu}(L^+L^-) \]

* more like “strawman” parameter table
Answers to the Key Questions

• **Can muon colliders at this moment be considered for the next project?**
 • Enormous progress in the proton driven scheme and new ideas emerged on positron one
 • But at this moment not mature enough for a CDR, need a careful design study done with a coordinate international effort

• **Is it worthwhile to do muon collider R&D?**
 • Yes, it promises the potential to go to very high energy
 • It may be the best option for very high lepton collider energies, beyond 3 TeV
 • It has strong synergies with other projects, e.g. magnet and RF development
 • Has synergies with other physics experiments
 • **Should not miss this opportunity?**

• **What needs to be done?**
 • Muon production and cooling is key => A new test facility is required.
 • Seek/exploit synergy with physics exploitation of test facility (e.g. nuSTORM)
 • A conceptual design of the collider has to be made
 • Many components need R&D, e.g. fast ramping magnets, background in the detector
 • Site-dependent studies to understand if existing infrastructure can be used
 • limitations of existing tunnels, e.g. radiation issues
 • optimum use of existing accelerators, e.g. as proton source
 • **R&D in a strongly coordinated global effort**
Proposed tentative timeline

1. Design
 - Baseline design
2. Design optimisation
3. Project preparation
4. Approve
5. Construction
 - Design
 - Construct
 - Exploit
6. Exploit
7. Technologies
 - Design / models
 - Prototypes / t. f. comp.
 - Prototypes / pre-series
8. Ready to decide on test facility
 - Cost scale known
9. Ready to commit to collider
 - Cost know
10. Ready to construct
11.
12.
13.
14.
15.
16.
17.

CDRs
TDRs
Technically limited

Years?
Q4: Energy management in the age of high-power accelerators?
Energy Efficiency

• Energy efficiency is not an option, it is a must!

• Proposed HEP projects are using $\mathcal{O}(\text{TWh}/\text{y})$, where energy efficiency and energy management must be addressed.

• Investing in dedicated R&D to improve energy efficiency pays off since savings can be significant.

• This R&D leads to technologies which serve the society at large.

• District heating, energy storage, magnet design, RF power generation, cryogenics, SRF cavity technology, beam energy recovery are areas where energy efficiency can be significantly be improved.
Figure of merit for proposed lepton colliders

Disclaimers:
1. This is not the only possible figure of merit
2. The presented numbers have different levels of confidence/optimism; they are still subject to optimisations

\[\frac{L/P_{\text{WP}}}{10^{34} \text{cm}^{-2} \text{s}^{-1}} = \frac{100 \text{ MW}}{360/\text{nb MWh}} \propto \sqrt{s}^{-4} \]

\[\sqrt{s} \propto \sqrt{s}^{-2} \]

Numbers for baseline proposals
Recent Developments of ILC in Japan

• KEK & Japanese HEP: Post-2012 Higgs ->
 • ILC 250GeV Higgs factory in Japan, upgradable in energy.

• November 2017:
 • LCB strong support
 • Timely decision sought from Japanese Government

• July 2018:
 • ILC Advisory panel of MEXT recommended the ILC proposal be reviewed by the SCJ.

• December 2018:
 • SCJ released its report - some issues need addressing

• March 2019:
 • MEXT presented its view to the LCB meeting in Tokyo
 • ILC Federation of Diet Members message of support
 • MEXT and KEK released their action plans.
 • ICFA made clear that other options being considered at EPPSU2019

MEXT = Ministry of Education, Culture, Sports, Science & Technology in Japan

Geoffrey Taylor “Perspective on the European Strategy from Asia”, EPPSU2019, Granada
Science Council of Japan (SCJ), Master Plan

- SCJ represents all sciences but
 - *Not policy making nor budgetary authority*

- Large-scale project proposals sought every three years.
 - *recommends “priority programs” to MEXT*
 - *2017 round: 20 selected from 200 proposals*

- MEXT Minister: ILC be evaluated in this process to provide evidence of support by the broader academic community in Japan
 - *ILC proposal submitted with recommendation letter from Barry Barish*
 - *Results of this evaluation will be publicist February 2020 (informally late 2019?)*

- Active political work continues
CepC Path to Funding

• “Chinese Initiated International Large Scientific Plan and Large Scientific Project”:

 • By 2020 3-5 Projects will be selected for further development with some funding
 • Following a small number of years (?), 1-2 projects selected for construction
 • Should be complementary to other large national or multinational scientific projects.
 • Be seen to be important to international scientific organizations’ and laboratory scientific projects and activities.
 • Process has commenced

Yifang Wang, Jie Gao
Inputs from the communities

• R. Pöschl - Future colliders - Linear and circular

• M. Spiro (Amaldi, Llewellyn Smith, Maiani, Myers, Iliopoulos, 50+ signataru) - A View on the European Strategy for Particle Physics (#81)

• Worldwide, the particle physics and accelerator community is very actively working towards the next major facility. Based on the designs and performance of linear and circular e+e− colliders in the 90 (Z) to 365 (above top-antitop) GeV centre-of-mass energy range, we consider a circular collider at CERN to be the most attractive option. It is also an investment in the future for a possible later stage as a 100 TeV hadron collider.
• A. Blondel, P. Janot: *Future strategies for the discovery and the precise measurement of the Higgs self coupling*

• Revision of 2013 European Strategy statement

 "energies of 500 GeV or higher could explore the Higgs properties further, for example the [Yukawa] coupling to the top quark, the [trilinear] self-coupling and the total width."

• Potential of FCC-ee at \(\sqrt{s} = 90, 240, 350, 365 \text{ GeV} \)** without 500 GeV**

 • Higgs width with 1.3%
 • Top Yukawa coupling – 2.5% from HL-LHC, combination with FCC-ee breaks model dependence
 • HHH coupling
 • 30 years of ILC500 to reach 3 sigma, 15 years on FCC-ee - from single-Higgs x-section as function of \(s \)
 • 5sigma with 4 FCC-ee experiments – (needs much more time at 1TeV ILC)
 • Precision physics with Zs

 We conclude that 500 GeV is not a particularly useful energy for the lepton colliders under consideration, especially for the FCC-ee. A 5\(\sigma \) demonstration of the existence of the Higgs self-coupling is within reach at the energies foreseen for the FCC-ee, with a moderate change of configuration, which certainly deserves consideration.
Some points from the discussion sessions

• M. Spiro – strong support for FCC-ee followed by FCC-hh
• K. Jacobs – against FCC-ee, wants to go for FCC-hh directly and as soon as possible
• M. Mangano – we should not look at projects in Asia, on which Europe has little influence anyway
• Many others expressed the opinion that FCC is too large and long project at that we should go for linear e+e- accelerator
• Several strong open calls that CERN should play leading role in Einstein Telescope project