

Research supported by the High Luminosity LHC project

HiLumi LHC Update on MCBRD Field Quality

F.F. Van der Veken in collaboration with M. Giovannozzi and R. de Maria

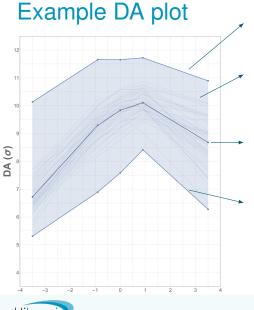
Outline

- 2 Beta Beating
- Switching Crossing Planes
- Including Cross-Talk
- Monte Carlo over Signs

6 Conclusion

Setup

• In total **420** studies, with on average **600** jobs each



>2.5M jobs \Rightarrow submission to BOINC! Many thanks to A. Mereghetti for the new scripts, and to the numerous LHC@Home volunteers

- DA is calculated over 11 angles and 60 seeds
- HLLHC V1.0 optics; to have a well-studied configuration and quick results

$$\begin{split} \beta^* &= 0.15/0.15/0.15/0.15 \text{m}, \ Q_x = 62.31, \ Q_y = 60.32 \\ \mu_x^{1 \to 5} &= 31.210 \,^\circ, \ \mu_y^{1 \to 5} = 30.373 \,^\circ \\ d_{\text{sep}}^{1,5} &= 2\text{mm}, \ \theta_c = 250 \text{ mrad} \end{split}$$

absolute maximum (maximum angle over all seeds)

individual seed lines (average over angles per seed)

average DA (average over angles and over seeds)

absolute minimum (minimum angle over all seeds)

Introduction

- MCBRD have two functions:
 - Create orbit bumps \Rightarrow setting in optics file
 - Correct orbit distortions \Rightarrow set during operation
- Magnets for horizontal and vertical planes \Rightarrow 8 Magnets
- Power connections:
 - IP ... {=D2 =MCBRDH MCBRDV=} ...
 - \Rightarrow MCBRDH.L and MCBRDV.R are inverted

⇒ aperture definitions (iap):
 MCBRDH: iap=1 for Beam 1, iap=2 for Beam 2
 MCBRDV: iap=2 for Beam 1, iap=1 for Beam 2

Errortable for MCBRD

- Nominal table in slhc/errors2/MCBRD_errortable_v3
- Only systematic errors (with $R_{ref} = 35 \text{mm}$):
 - $b_3 = -10$ (MCBRDH; all other orders zero) $a_3 = +10$ (MCBRDV; all other orders zero)
 - Taken from 8th Annual HiLumi Meeting
 - (E. Todesco, et_wp3_hilumi_2018-10-17.pdf)
- Reference fields:

 $B^{\rm ref}_{\rm MCBRDH} = 5\,{\rm Tm}$

$$B_{\text{MCBRDV}}^{\text{ref}} = 5 \,\text{Tm}$$

Different Layouts

Different Layouts

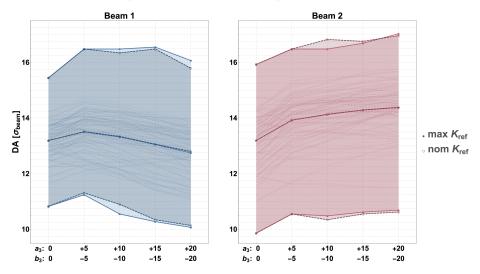
- Beta functions almost unchanged from first MCBRD towards second MCBRD (on one side of IP)
- Effect of two apertures ("cross-talk") not accounted for in DA simulations
- Hence layout differences are not expected to have any major impact on DA

Outline

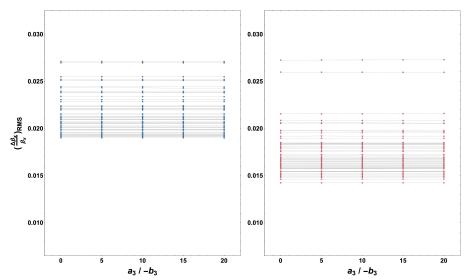
Introduction

2 Beta Beating

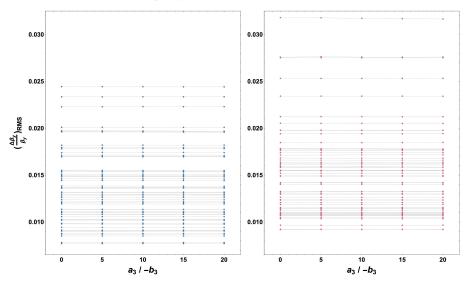
- Switching Crossing Planes
- Including Cross-Talk
- Monte Carlo over Signs


6 Conclusion

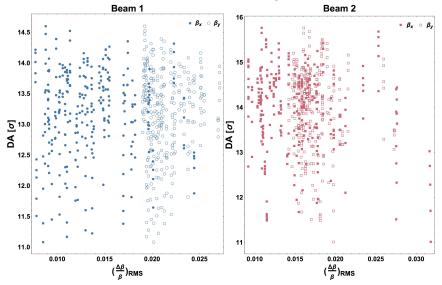
Beta Beating


- Complementary investigation to previous talk: what is the effect of MCBRD on the beta beating?
- The *b*₃ errors generate a feeddown to *b*₂, possibly enhancing beta beating
 - \Rightarrow does this influence the effect of MCBRD?
 - \Rightarrow is there a clear correlation between beta beating and DA?

Error investigation of MCBRD (nominal signs), scan over a_3 and b_3



Beta beating (in x) for different values of a_3/b_3 of MCBRD



Beta beating (in y) for different values of a_3/b_3 of MCBRD

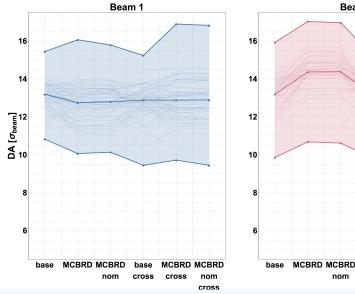
Correlation between beta beating and DA

Introduction

2 Beta Beating

- Switching Crossing Planes
- Including Cross-Talk
- Monte Carlo over Signs

6 Conclusion



Switching Crossing Planes

- Typically, the crossing is vertical in IP1 and horizontal in IP5
- Alternative scenario: horizontal in IP1 and vertical in IP5
- To see any effect, errors set at $a_3 = 20$ and $b_3 = -20$
- Tested different cases:
 - base: baseline without MCBRD
 - MCBRD: baseline with MCBRD
 - MCBRD nom: MCBRD, 10% ref strength in separation plane
 - base cross: baseline without MCBRD, switched planes
 - MCBRD cross: baseline with MCBRD, switched planes
 - **MCBRD nom cross**: with MCBRD, ref strenght at 10% in separation plane, switched planes

Effect of changing crossing plane (no octupoles)

MCBRD MCBRD

nom

cross

cross

base

cross

nom

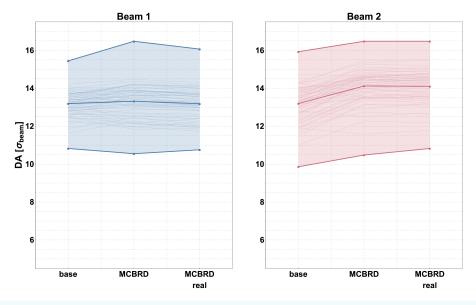
Beam 2

Outline

Introduction

- 2 Beta Beating
- Switching Crossing Planes
- Including Cross-Talk
- Monte Carlo over Signs

6 Conclusion



Including Cross-Talk: Realistic Errortable for MCBRD

- In a realistic scenario there is cross-talk between the two apertures
- This has been measured in the latest (HV-HV) layout
- Used for simulations in the first (HH-VV) layout
- Expected errors are $a_3 = 15$ and $b_3 = -7$

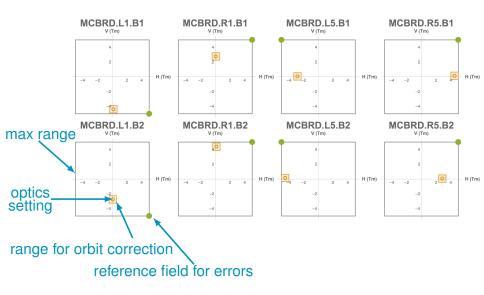
Realistic errortable for MCBRD

Outline

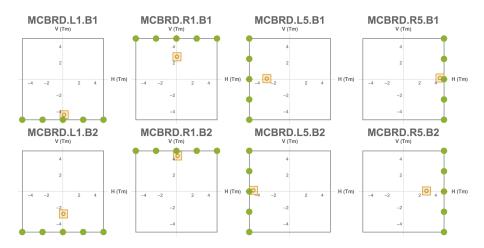
Introduction

- 2 Beta Beating
- Switching Crossing Planes
- Including Cross-Talk
- 6 Monte Carlo over Signs

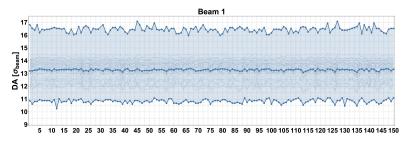
6 Conclusion

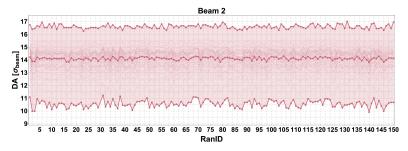


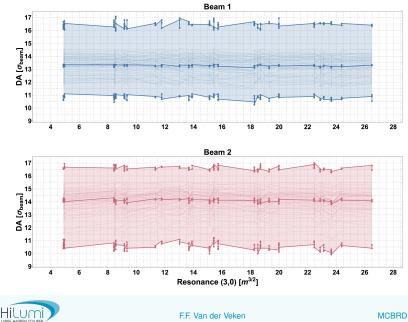
Sign of MCBRD Reference Field


- sign of reference field is in some cases dominated by deterministic part
- fixed for 8 magnets (crossing plane)
- undefinable for 8 magnets (separation plane)
- scan over undefined signs, in 5 steps
 - \Rightarrow 625 configurations

from these we chose 150 randomly






Random sign configurations for MCBRD

Random sign configurations for MCBRD

Outline

Introduction

- 2 Beta Beating
- Switching Crossing Planes
- Including Cross-Talk
- Monte Carlo over Signs

6 Conclusion

Conclusions

- Beta beating not influenced by MCBRD: feeddown negligible
- No clear correlation between beta beating and DA
- Switching crossing planes has no effect on DA
- Including cross talk has no effect on DA
- Different random sign configurations have little to no effect:
 - Beam 1: spread on minimum DA is 0.83σ (std 0.15σ) spread on average DA is 0.31σ (std 0.07σ)
 - Beam 2: spread on minimum DA is 1.3σ (std 0.27σ) spread on average DA is 0.50σ (std 0.11σ)
 - No clear link with resonance driving terms

Outlook

- Investigate resonance driving terms to clarify difference between Beam 1 and beam 2 (ongoing)
- Test implementation in v1.4 and v1.5, and compare to v1.0
- Implementation of knob to correct beta beating

Thank you for your attention!

Backup Slides

Multipole Expansion

• Errors are expanded in multipoles:

$$B_{y} + iB_{x} = \sum_{n=0}^{\infty} (B_{n+1} + iA_{n+1}) \frac{(x+iy)^{n}}{R^{n}}$$
$$B_{y}(x, y) \text{ and } B_{x}(x, y), \text{ but } \frac{\partial B_{n}}{\partial x} = \frac{\partial B_{n}}{\partial y} = \frac{\partial A_{n}}{\partial x} = \frac{\partial A_{n}}{\partial y} = 0$$
$$\bullet B_{y} = \operatorname{Re} \{B_{y} + iB_{x}\} \qquad B_{x} = \operatorname{Im} \{B_{y} + iB_{x}\}$$

• Expansion is not automatically frame invariant!

Multipole Expansion: Signs

• If we interchange $x \to -x$ (e.g. Beam 4), we have to adapt the multipoles to keep $B_y \to B_y$: $B_y = \sum_{n=0}^{\infty} \left[B_{n+1} \sum_{\substack{m \text{ even}}} (-)^{\frac{m}{2}} - A_{n+1} \sum_{\substack{m \text{ odd}}} (-)^{\frac{m-1}{2}} \right] {n \choose m} \frac{y^m x^{n-m}}{R^n}$

• If $x \to -x$ then

 $A_{
m odd}
ightarrow -A_{
m odd}$ and $B_{
m even}
ightarrow -B_{
m even}$ (i.e. skew dipole, regular quadrupole, skew sextupole, ...)

Reference Field

- Reference field is dominant order of magnet
- Errors are several orders of magnitude smaller
- No errors at orders below reference field by definition

$$B_n = 10^{-4} B_N b_n$$
 $A_n = 10^{-4} B_N a_n$
or $B_n = 10^{-4} A_N b_n$ $A_n = 10^{-4} A_N a_n$
where $b_{n < N} = 0$

Reference Field: Signs

$$B_y + i B_x = 10^{-4} \frac{B_N}{R^N} \sum_{n=N}^{\infty} (b_{n+1} + i a_{n+1}) \frac{(x+iy)^n}{R^{n-N}}$$

- Main field can be regular (B_N) or skew (A_N)
- Sign of main field changes for $B_{\rm even}$ or $A_{\rm odd}$
- If x-flip, multipoles have to change sign when
 B_{odd} a_{odd}, B_{odd} b_{even}, A_{even} a_{odd}, A_{even} b_{even},
 B_{even} a_{even}, B_{even} b_{odd}, A_{odd} a_{even}, A_{odd} b_{odd}

- 1: check if *x*-flip, if yes then 2: flip correct order
- x-flip in case of:

y-rotation, error convention, and Beam 4

• $y_{fact} = (-1)^{is_{inv} + magnetic_{sign} + is_{beam4}}$

• Define: $aaa = y_{fact}$ bbb = 1 $aaa \cdot a_{odd}$ $aaa \cdot b_{even}$ $bbb \cdot b_{odd}$ $bbb \cdot a_{even}$

- Instead of changing the sign of the reference field, we change the sign of all multipoles
- Skew magnets are given negative reference radius $\Rightarrow \texttt{is_skew}$
- But sign of reference field in case of Beam 4 is already taken into account in optics (due to bv_aux flag) or in Beam 4 sequence file

•
$$y_{\texttt{factref}} = (-1)^{\texttt{is_inv} + \texttt{magnetic_sign}}$$

- If $y_{factref} = -1$: sign = $(-1)^{is_skew + order}$ (order in k^n) else sign = +1
- $aaa = sign \cdot aaa$ bbb = $sign \cdot bbb$

- Instead of changing the sign of the reference field, we change the sign of all multipoles
- Skew magnets are given negative reference radius $\Rightarrow \texttt{is_skew}$
- But sign of reference field in case of Beam 4 is already taken into account in optics (due to bv_aux flag) or in Beam 4 sequence file

•
$$y_{factref} = (-1)^{is_{inv} + magnetic_{sign}}$$

- If $y_{factref} = -1$: sign = $(-1)^{is_skew + order}$ (order in k^n) else sign = +1
- $aaa = sign \cdot aaa$ bbb = $sign \cdot bbb$

- Instead of changing the sign of the reference field, we change the sign of all multipoles
- Skew magnets are given negative reference radius $\Rightarrow \texttt{is_skew}$
- But sign of reference field in case of Beam 4 is already taken into account in optics (due to bv_aux flag) or in Beam 4 sequence file

•
$$y_{factref} = (-1)^{is_{inv} + magnetic_{sign}}$$

- If $y_{factref} = -1$: sign = $(-1)^{is_skew + order}$ (order in k^n) else sign = +1
- $aaa = sign \cdot aaa$ $bbb = sign \cdot bbb$

www.cern.ch