

# **Electrical requirements of DFX components: specification and tests**

A. Ballarino



DFX Detailed Design Review, CERN, 20/06/2019

## **Electrical components in DFX- Electrical Insulation**

#### **Electrical components:**

Nb-Ti bus-bar from SC Link

**Nb-Ti bus-bar** from the  $\lambda$ -plate

**Instrumentation signals** (see next presentation)

#### Instrumentation connectors

System includes electrical splices (Nb-Ti to Nb-Ti done in the tunnel)

|          | EDMS 18        | 821907                                                     |                                                    |      |                                                       |      |                                             |                         |   |  |
|----------|----------------|------------------------------------------------------------|----------------------------------------------------|------|-------------------------------------------------------|------|---------------------------------------------|-------------------------|---|--|
|          | Rating<br>(kA) | Worst case<br>voltage to<br>ground during<br>operation (V) | Acceptance tests of<br>components<br>to ground (V) |      | Insulation test<br>voltage of system<br>to ground (V) |      | Leakage<br>current per<br>component<br>(µA) | Test<br>duration<br>(s) |   |  |
|          |                |                                                            | RT                                                 | NOC  | RT                                                    | NOC  |                                             |                         |   |  |
|          | 18             | 900                                                        | 4600                                               | 2300 | 460                                                   | 1080 | ≤10                                         | 30                      |   |  |
| ,        | 7              | 900                                                        | 4600                                               | 2300 | 460                                                   | 1080 | ≤10                                         | 30                      | _ |  |
| <b>\</b> | 2              | 540                                                        | 3160                                               | 1580 | 316                                                   | 648  | ≤10                                         | 30                      |   |  |
|          | 0.2            | 540                                                        | 3160                                               | 1580 | 316                                                   | 648  | ≤10                                         | 30                      |   |  |
|          | 0.12           | 40                                                         | 1160                                               | 580  | 220                                                   | 360  | ≤10                                         | 30                      |   |  |
|          | 0.035          | 900                                                        | 4600                                               | 2300 | 460                                                   | 1080 | ≤10                                         | 30                      |   |  |

DFX



 $RT \rightarrow Room Temperature$ NOC  $\rightarrow$  He gas @ RT, 1 bar

Validated by MCE

# Electrical components in DFX Electrical Transients

|     | EDIVIS 1821907 |                               |                 |                                                 |                                           |                        |  |  |  |  |  |
|-----|----------------|-------------------------------|-----------------|-------------------------------------------------|-------------------------------------------|------------------------|--|--|--|--|--|
|     | Rating<br>(kA) | MIITs<br>(MA <sup>2</sup> ·s) | dl/dt<br>(kA/s) | τ <sub>n</sub> (no quench of<br>magnets)<br>(s) | τ <sub>Q</sub> (quench of magnets)<br>(s) | Equivalent time<br>(s) |  |  |  |  |  |
|     | 18 (*)         | 32                            | 250             | 130                                             | 0.2                                       | 0.1                    |  |  |  |  |  |
| DFX | 7              | 5                             | 250             | 130                                             | 0.2                                       | 0.12                   |  |  |  |  |  |
|     | 2 (**)         | 1                             | 20              | 20                                              | 0.5                                       | -                      |  |  |  |  |  |
|     | 0.2 (***)      | 0.02                          | 0.25            | 21                                              | 0.8                                       | -                      |  |  |  |  |  |
|     | 0.12           | 0.02                          | 0.22            | 5                                               | 0.8                                       | -                      |  |  |  |  |  |

- Nb-Ti superconducting cables **AC losses** will be measured at Univ. of Twente on short (few meters long) cables with final design (contract being placed).

- Full system validation, including Nb-Ti cables, with prototype system test in the SM-18 (Oct 2020)



EDMC 4004007

### **Protection**



Cu stabilizer in Nb-Ti bus-bar limiting Tmax to < 100 K during transients



Redundancy of all signals

## **Instrumentation connectors**

- Definition of connectors being discussed within MCF as part of a global strategy for HL-LHC
  For the DFX:
- Large amount of signals to be extracted from the DFX
- Each connector grouping voltage taps from the same circuit
- Insulation of pins to ground according to table in slide 1
- Insulation between pins < 500 V in NOC</p>



5



## Thanks for your attention !



