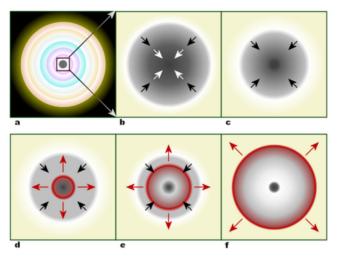
20th May 2021

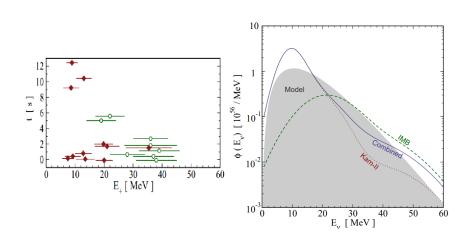

Supernova bounds on axion-like particles coupled with nucleons and electrons

Based on F. Calore, PC, M. Giannotti, J. Jaeckel, G. Lucente and A. Mirizzi, in preparation

Pierluca Carenza Bari Univ. & INFN pierluca.carenza@ba.infn.it

Core-Collapse Supernovae

For massive stars ($M>8\,M_\odot$) the nuclear fusion produces heavy elements in an onion structure and a degenerate iron core



Iron in the core cannot be burnt and the star starts to collapse

SN1987A: neutrino signal

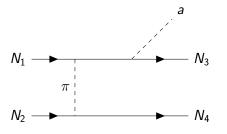
H. Yuksel and J. F. Beacom, Phys. Rev. D 76 (2007), 083007

 $\sim 10^{53}\, {
m erg}$ emitted as neutrinos with energy $\sim {\it O}(15\, {
m MeV})$ in $\sim 10\, {
m s}$

Axions and ALPs

- R. D. Peccei et al., Phys. Rev. Lett. 38 (1977)
- S. Weinberg F. Wilczek, Phys. Rev. Lett. 40 (1978) 223 279

The ALP-fermion interaction is a general feature of many ALP models

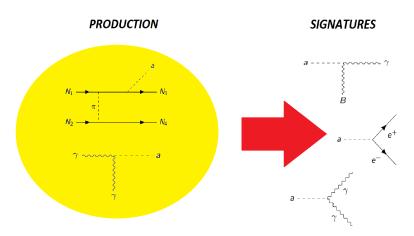

$$\mathcal{L}_{ax} = \frac{1}{2} \partial_{\mu} a \partial^{\mu} a - \xi \frac{a}{f_{a}} \frac{g^{2}}{32\pi^{2}} \tilde{G}^{a}_{\mu\nu} G^{\mu\nu a} + \left[\frac{g_{a}}{2m} \bar{\Psi} \gamma^{\mu} \gamma^{5} \Psi \partial_{\mu} a \right] - \frac{g_{a\gamma}}{4} a \tilde{F}^{\mu\nu} F_{\mu\nu}$$

We are interested in couplings with electrons and nucleons

Axion-nucleon bremsstrahlung in SNe

M. S. Turner, Phys. Rev. Lett. **60** (1988)

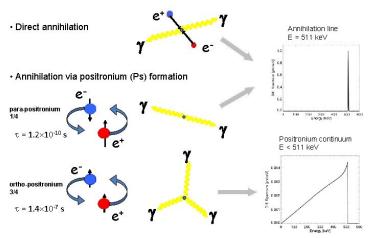
SN axions are produced by nucleon-axion bremsstrahlung



See PC et al. [arXiv:1906.11844 [hep-ph]] for an updated calculation

Higher energy processes are negligible, as $\pi^-p \to an$ PC, B. Fore *et al.* Phys. Rev. Lett. **126** (2021) no.7, 071102

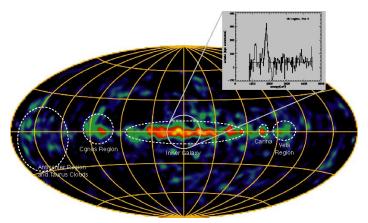
ALPs for diffuse fluxes


Many different possibilities with ALPs

ALPs & 511 keV line

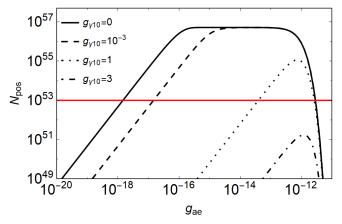
Positrons lose energy in $10^3 - 10^6$ yrs

Electron Positron Annihilation



Is it possible to explain the 511 keV line with ALPs?

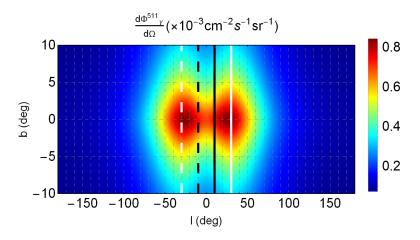
The 511 keV line


N. Prantzos et al. Rev. Mod. Phys. 83 (2011), 1001-1056

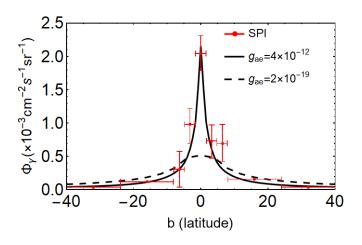
The Galactic flux at 511 keV is partially unexplained

SN positron production

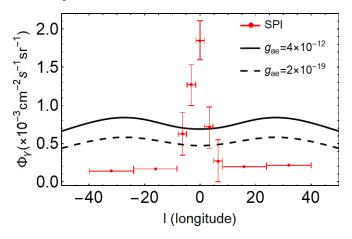
Positrons must escape the SN photosphere and remain in the Galaxy


Number of positrons for $g_{ap}=10^{-9}$ and $m_a=30$ MeV

511 keV photon skymap for $g_{ae}=4\times10^{-12}$


ALPs decay very close to the SN and positrons are trapped by $B \sim O(\mu G)$

511 keV photon skymap for $g_{ae}=2\times 10^{-19}$


ALPs decay far from to the SN, smeared distribution

Let's compare with SPI data...

Very good agreement for the vertical distribution...

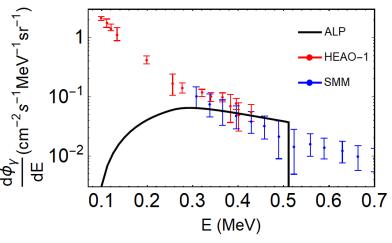
... much less agreement with the horizontal one

No ccSN-based mechanism explains the 511 keV line!!

Diffuse SN Axion Background

G. G. Raffelt et al., Phys. Rev. D 84 (2011), 103008

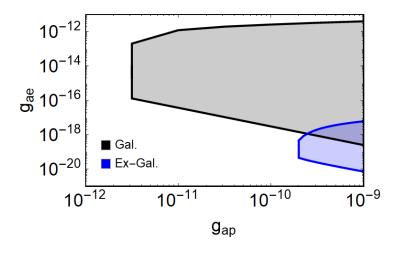
In analogy to neutrinos, the DSAB is created by all past SNe


$$\frac{d\phi_a(E_a)}{dE_a} = \int_0^\infty (1+z) \frac{dN_a(E_a(1+z))}{dE_a} [R_{SN}(z)] \left[\left| c \frac{dt}{dz} \right| dz \right]$$

Where:

- $ightharpoonup dN_a/dE$ is the SN axion flux
- $ightharpoonup R_{SN}$ is the cosmological SN rate
- ightharpoonup dt/dz depends on the cosmological parameters

Extragalactic X-ray diffuse flux


The extragalactic flux is redshifted, no more 511 keV line

Diffuse flux for $g_{ae} = 7 \times 10^{-21}$

Bounds for $m_a = 30 \text{ MeV}$

This bound covers many orders of magnitude

Conclusions

- ▶ Is there an ALP-based mechanism to explain the 511 keV line? Not with SNe
- A new astrophysical ALP bound
- Even more informations from future data and more accurate analysis

Thanks for your attention