

The partonic picture at high-energy lepton colliders

Yang Ma

Pittsburgh Partcile-physics, Astrophysics, and Cosmology Center, Department of Physics and Astronomy, University of Pittsburgh, PA 15260, USA

May 20, 2021

In collaboration with Tao Han and Keping Xie

[T. Han, Y. Ma, K.Xie 2007.14300]

[T. Han, Y. Ma, K.Xie 2103.09844]

What is the PDF of a lepton?

"Equivalent photon approximation (EPA)" [C. F. von Weizsacker, Z. Phys. 88, 612 (1934)] Treat photon as a parton constituent in the electron [E. J. Williams, Phys. Rev. 45, 729 (1934)]

$$\sigma(\ell^{-} + a \to \ell^{-} + X) = \int \mathrm{d}x f_{\gamma/\ell} \hat{\sigma}(\gamma a \to X)$$

$$f_{\gamma/\ell, \text{EPA}}(x_{\gamma}, Q^{2}) = \frac{\alpha}{2\pi} \frac{1 + (1 - x_{\gamma})^{2}}{x_{\gamma}} \ln \frac{Q^{2}}{m_{\ell}^{2}}$$
Extra terms:

Applications at muon collider

Production cross sections

[Frixione, Mangano, Nason, Ridolfi 2103.09844] [Budnev, Ginzburg, Meledin, Serbo, Phys. Rept.(1975)]

$$\sigma(\ell^+\ell^- \to F + X) = \int_{\tau_0}^1 d\tau \sum_{ij} \frac{d\mathscr{L}_{ij}}{d\tau} \ \hat{\sigma}(ij \to F), \ \tau = \hat{s}/s$$

Partonic luminosities

A possible high-energy lepton collider: Why?

Why lepton colliders?

- Leptons are the ideal probes of short-distance physics
 - Cleaner background comparing to hadron colliders
 - High-energy physics probed with much smaller collider energy
- ee colliders
 - A glorious past: discovery of charm, τ , and gluon
 - Important future: Precision EW constraints on BSM physicss, Higgs physics

Muon colliders

- A s-channel Higgs factory: Higgs production enhanced by $m_{\mu}^2/m_e^2 \sim 40000$
 - Direct measurements on y_{μ} and Γ_H
- Multi-TeV muon colliders: Less radiations then electron
 - Center of mass energy 3-15 TeV and the more speculative $E_{\rm cm} = 30$ TeV
 - \blacksquare New particle mass coverage $M \sim (0.5-1) E_{\rm cm}$
 - Great accuracies for WWH, WWHH, H³, H⁴
 - **...**

Muon Collider Physics Potential Pillars

Direct search of heavy particles

SUSY-inspired, WIMP, VBF production, 2->1 High rate indirect probes Higgs single and selfcouplings, rare Higgs decays, exotic decays High energy probes

Higgs compositeness

A high-energy muon collider at first glance

What are the dominant processes at a high-energy muon collider?

- Leading-order: $\mu^+\mu^- \rightarrow \mu^+\mu^-$, $\tau^+\tau^-$, $q\bar{q}$, W^+W^- , and $\gamma\mu \rightarrow \gamma\mu$
- $\gamma\gamma$ scatterings: $\gamma\gamma \rightarrow \tau^+\tau^-, \, q \, \bar{q}, \, W^+W^-$

Need some cuts:

- Detector angle: $\theta > 5^{\circ}(10^{\circ}) \iff |\eta| < 3.13(2.44)$
- Threshold: $m_{ij} > 20 \text{ GeV}$
- \blacksquare Need a p_{T} cut to separate from the nonperturbative hadronic production

[Chen, Barklow, and Peskin, hep-ph/9305247; Drees and Godbole, PRL 67, 1189, T. Barklow, etal, LCD-2011-020]

$$p_T > (4 + \sqrt{s}/3 \,\mathrm{TeV}) \,\mathrm{GeV}$$

Go beyond the EPA at a high-energy muon collider

We have been doing:

EPA and ISR

"Effective W Approx." (EWA)

[G. Kane, W. Repko, and W. Rolnick, PLB 148 (1984) 367]

[S. Dawson, NPB 249 (1985) 42]

We will add:

- [T. Han, Y. Ma, K.Xie 2007.14300, 2103.09844]
- Above μ_{QCD} : QED \otimes QCD q/g emerge

Above $\mu_{\rm EW} = M_Z$: EW \otimes QCD EW partons emerge

In the end, everything is parton, i.e. the full SM PDFs.

EWPDF @ MuC: Yang Ma

The PDFs for a muon collider

QED QCD PDFs:

 $f_{\mu_{\mathrm{val}}}, f_{\gamma}, f_{\ell_{\mathrm{sea}}}, f_q, f_g$

- Scale uncertainty: 20% for $f_{g/\mu}$
- The averaged momentum fractions $\langle x_i \rangle = \int x f_i(x) dx$

$Q(\mu^{\pm})$	$\mu_{\rm val}$	γ	lsea	q	g
30 GeV	98.2	1.72	0.019	0.024	0.0043
50 GeV	98.0	1.87	0.023	0.029	0.0051
M_Z	97.9	2.06	0.028	0.035	0.0062

EW PDFs: All SM particles

	Q	μ	$\gamma, Z, \gamma Z$	W^{\pm}	v	lsea	q	g
	M_Z	97.9	2.06	0	0	0.028	0.035	0.0062
	3 TeV	91.5	3.61	1.10	3.59	0.069	0.13	0.019
I	5 TeV	89.9	3.82	1.24	4.82	0.077	0.16	0.022

- Scale uncertainty: $\sim 20\%$ between $Q=3~{\rm TeV}$ and $Q=5~{\rm TeV}$
- The EW correction is not small: $\sim 100\%$ for $f_{d/\mu}$ due to relatively large SU(2) gauge coupling.

Parton luminosities at a possible muon collider

Consider a $3~{\rm TeV}$ and a $10~{\rm TeV}$ machine

Partonic luminosities for

 $\mu^+\mu^-, \gamma\mu, \gamma\gamma, qq, \gamma q, \gamma g, gq, \text{ and } gg$

- \blacksquare The partonic luminosity of $\gamma g + \gamma q$ is $\sim 20\%$ of the $\gamma\gamma$ one
- \blacksquare The partonic luminosities of qq,~gq, and gg are $\sim 0.5\%$ of the $\gamma\gamma$ one
- Given the stronger QCD coupling, sizable QCD cross sections are expected.
- Scale uncertainty is $\sim 20\% (\sim 50\%)$ for photon (gluon) initiated processes.

Jet production of possible lepton colliders (I)

Large photon induced non-perturbative hadronic production

[Drees and Godbole, PRL 67 1189, hep-ph/9203219]

[Chen, Barklow, and Peskin, hep-ph/9305247; Godbole, Grau, Mohan, Pancheri, SrivastavaNuovo Cim. C 034S1]

- $\sigma_{\gamma\gamma}$ may reach micro-barns level at TeV c.m. energies
- $\sigma_{\ell\ell}$ may reach nano-barns, after folding in the $\gamma\gamma$ luminosity
- The events populate at low p_T regime So we can separate from this non-perturbative range via a p_T cut.

[T. Barklow, D. Dannheim, M. O. Sahin, and D. Schulte, LCD-2011-020]

Jet production at a possible lepron collider (II)

• Low- p_T range: photon induced non-perturbative hadronic production

[Chen, Barklow, and Peskin, hep-ph/9305247: Drees and Godbole, PRI, 67, 1189 T. Barklow, et al. | CD-2011-020]

• High- p_T range $[p_T > (4 + \sqrt{s}/3 \text{ TeV}) \text{ GeV}]$: perturbatively computable

 $\gamma\gamma \rightarrow q \bar{q}, \ \gamma q \rightarrow q \bar{q}, \ \gamma q \rightarrow q q,$

 $qq \rightarrow qq (qq), qq \rightarrow qq \text{ and } qq \rightarrow qq (q\bar{q}).$

• $Q = \sqrt{\hat{s}}/2$, due to large $\alpha_s \ln(Q^2)$, a $30 \sim 40\%$ enhancement if $Q = \sqrt{\hat{s}}$

Including the QCD contribution leads to much larger total cross section.

- *qq* initiated cross sections are large for its large multiplicity;
- gq initiated cross sections are large for its large luminosity. EWPDF @ MuC: Yang Ma
- $\gamma\gamma$ initiated cross sections here are smaller than the EPA results.

Refresh the picture of high-energy muon colliders

What is the dominant process at a high-energy muon collider?

Quark/gluon initiated jet production dominates Before: After:

10 / 17

Di-jet distributions at a muon collider

Rather a conservative set up: $\theta = 10^{\circ}$

Some physics:

Two different mechanisms: $\mu^+\mu^-$ annihilation VS Fusion processes

- Annihilation is more than 2 orders of magnitude smaller than fusion process.
- Annihilation peaks at $m_{ij} \sim \sqrt{s}$;
- Fusion processes peak near *m*_{ij} threshold.
- Annihilation is very central, spread out due to ISR;
- Fusion processes spread out, especially for γq and γg initiated ones.

Inclusive jet distributions at a muon collider

- Jet production dominates over WW production until p_T > 60 GeV;
- *WW* production takes over around energy ~ 200 GeV.
- QCD contributions are mostly forward-backward; γγ, γq, and γg initiated processes are more isotropic.

An EW version of HE LHC

- All SM particles are partons when the machine energy is high
- We are able to determine the partons with their different polarizations

The EW parton luminosities of a 30 TeV muon collider

[T. Han, Y. Ma, K.Xie 2007.14300]

One example: $t\bar{t}$ production at a muon collider

[T. Han, Y. Ma, K.Xie 2007.14300]

Other processes: $W^+W^-, ZH, HH, t\bar{t}H$

The full picture: Semi-inclusive processes

Just like in hadronic collisions: $\mu^+\mu^- \rightarrow$ exclusive particles + remnants

[T. Han, Y. Ma, K.Xie 2007.14300]

Some observations:

- The annihilations decrease as 1/s.
- ISR needs to be considered, which can give over 10% enhancement.
- The fusions increase as $\ln^p(s)$, which take over at high energies.
- The large collinear logarithm $\ln(s/m_{\mu}^2)$ needs to be resummed, set $Q = \sqrt{\hat{s}}/2$. EWPDF @ MuC: Yang Ma

Summary and prospects

EWPDF is important and necessary:

- At very high energies, the collinear splittings dominate. All SM particles should be treated as partons that described by proper PDFs.
 - The large collinear logarithm needs to be resummed via solving the DGLAP equations, so the **QCD partons (quarks and gluons) emerge**.
 - When $Q > M_Z$, the EW splittings are activated: the EW partons appear, and the existing QED \otimes QCD PDFs may receive big corrections.

A high-energy muon collider is an EW version of HE LHC

- There are many things to work on: SUSY, DM, Higgs, etc.
- \blacksquare Two classes of processes: $\mu^+\mu^-$ annihilation VS fusions

[T. Han, Y. Ma, K.Xie 2007.14300]

• The main background of is the jet production:

- Low p_T range: non-perturbative γγ initiated hadronic production dominates [Chen, Barklow, and Peskin, hep-ph/9305247; Drees and Godbole, PRL 67, 1189,T. Barklow, etal, LCD-2011-020]
- \blacksquare High p_{T} range, q and g initiated jet production dominates

[T. Han, Y. Ma, K.Xie 2103.09844]

• EWPDF allows to determine the contributions from different partons and their different ploarizations.