Charged Lepton Flavor Violation in General Two Higgs Doublet Model

Girish Kumar National Taiwan University

in collaboration with George Wei-Shu Hou

Based on arXiv: 2003.03827 [PRD] arXiv: 2008.08469 [PRD]

PPC 2021 @Univ. of Oklahoma, May 21, 2021

Motivation

Why Charged lepton flavor violation (cLFV) is interesting ?

Unlike charge, color etc, the family number is not a symmetry of the $\mathscr{L}_{\rm SM}.$

Broken in quark sector – CKM. $b \rightarrow s\gamma$

Broken in neutral leptons – neutrino oscillations.

But, so-far, we have not seen flavor violation in charged leptons.

 $\mu \to e\gamma, \tau \to \mu\gamma, \tau \to eee\ldots$

Highly suppressed due to tiny neutrino masses and loop factor

zero SM background!

Discovery would be a clear sign of new physics!

ℓ -flavor violation: experimental data

μFV process	Current bound	Future sensitivity
$\mu ightarrow e\gamma$	4.2×10^{-13} (MEG)	6×10^{-14} (MEG II)
$\mu \rightarrow 3e$	1.0×10^{-12} (SINDRUM)	$\sim 10^{-15} - 10^{-16}$ (Mu3e)
$\mu N ightarrow eN$	7×10^{-13} (SINDRUM II)	$\sim 10^{-15} - 10^{-17}$ (COMET)
		3×10^{-17} - (Mu2e)
		$\sim 10^{-18} - 10^{-19}$ (PRISM)
$ au o \mu \gamma$	$4.4 \times 10^{-8} $ (BaBar)	10^{-9} (Belle II)
$ au o 3\mu$	2.1×10^{-8} (Belle)	3.3×10^{-10} (Belle II)

General Two-Higgs Doublet Model (g2HDM)

Formalism: Two Higgs doublets, Φ_1 and Φ_2 , with $\langle \Phi_i \rangle = v_i / \sqrt{2}$. $-\mathscr{L}_Y^{\text{weak}} = \bar{Q}_L \left(\tilde{\Phi}_1 Y_1^U + \tilde{\Phi}_2 Y_2^U \right) U_R + \bar{Q}_L \left(\Phi_1 Y_1^D + \Phi_2 Y_2^D \right) D_R$ $+ \bar{L}_L \left(\Phi_1 Y_1^L + \Phi_2 Y_2^L \right) E_R + \text{h.c.}$ Lee, 1973; for a review, see Branco et al, 2012

g2HDM : no additional Z_2 symmetry; both doublet couple to u-and d-type

Unitary transformation to fermion mass basis: not possible to diagonalize both Yukawa matrices simultaneously. W.S. Hou, 1992, Davidson and Haber 2005

Mahmoudi and Stal, PRD (2010)

$$\mathscr{L}_{Y}^{\text{Phys.}} = -\frac{1}{\sqrt{2}} \sum_{f=u,d,\ell} \bar{f}_{i} \left[\left(\lambda_{i}^{f} \delta_{ij} s_{\gamma} + \rho_{ij}^{f} c_{\gamma} \right) h + \left(\lambda_{i}^{f} \delta_{ij} c_{\gamma} - \rho_{ij}^{f} s_{\gamma} \right) H - i \operatorname{sgn} \left(Q_{f} \right) \rho_{ij}^{f} A \right] R f_{j} \\ - \bar{u}_{i} \left[\left(V \rho^{d} \right)_{ij} R - \left(\rho^{u\dagger} V \right)_{ij} L \right] d_{j} H^{+} - \bar{\nu}_{i} \rho_{ij}^{\ell} R \ell_{j} H^{+} + h \cdot c \right] \\ \lambda^{f} \text{ are real and diagonal,} \lambda_{i}^{f} = \sqrt{2} m_{i}^{f} / v \\ \rho^{f} (\text{"extra Yukawas"}) \text{ are in general non-diagonal and complex}$$

Extra Yukawa in g2HDM

 $\rho_{ij}^{f} : \text{source for flavor changing currents and CP violation} \\ \rho^{\ell} = \begin{pmatrix} \rho_{ee} & \rho_{e\mu} & \rho_{e\tau} \\ \rho_{\mu e} & \rho_{\mu\mu} & \rho_{\mu\tau} \\ \rho_{\tau e} & \rho_{\tau\mu} & \rho_{\tau\tau} \end{pmatrix} \quad \rho^{u} = \begin{pmatrix} \rho_{uu} & \rho_{uc} & \rho_{ut} \\ \rho_{cu} & \rho_{cc} & \rho_{ct} \\ \rho_{tu} & \rho_{tc} & \rho_{tt} \end{pmatrix} \quad \rho^{d} = \begin{pmatrix} \rho_{dd} & \rho_{ds} & \rho_{db} \\ \rho_{sd} & \rho_{ss} & \rho_{sb} \\ \rho_{bd} & \rho_{bs} & \rho_{bb} \end{pmatrix}$

Alignment $(c_{\gamma} \rightarrow 0)$ without decoupling is possible in g2HDM Hou and Kikuchi, EPJC (2017)

alignment limit $c_{\gamma} \rightarrow 0$

plus mass-mixing hierarchy

5

 $-\frac{1}{\overline{f_i}}\sum_{i} \bar{f_i} \left(\lambda_i^f \delta_{ii} s_{\gamma} + \rho_i^f c_{\gamma}\right) h$

our working assumption for $\rho_{\tau\mu}$, $\rho_{\tau\tau}$, and ρ_{tt} : ρ_{32}^{f} , $\rho_{33}^{f} = \mathcal{O}(\lambda_{3}^{f})$ and $\max[c_{\gamma}] \sim 0.2$

Some motivations for study of *extra Yukawas*

<u>Alignment plus fermion mass-mixing hierarchy</u> can be an attractive substitute for natural flavor conservation's *overkill*.

Extra Yukawas are complex :

 ρ_{tt} (or ρ_{tc}) can drive **baryon asymmetry of universe**

Fuyuto, Hou, Senaha, PLB (2018) also, Fuyuto, Hou, Senaha, PRD (2020) [connection with eEDM]

Mass-spectrum lies in sub-TeV range ρ_{tt} is naturally $\mathcal{O}(1)$ promising signatures at LHC!Kohda, Modak, Hou, PLB 776 (2018),
Kohda, Modak, Hou, PLB 786 (2018),
Ghosh, Hou, Modak, Phys.Rev.Lett (2020) $cg \rightarrow tA/tH \rightarrow tt\bar{t}$
 $cg \rightarrow tA/tH \rightarrow tt\bar{c}$
 $cg \rightarrow bH^+ \rightarrow bt\bar{b}$

$\tau ightarrow \mu \gamma$ in g2HDM

The g2HDM naturally contains Higgs LFV couplings, $\phi \ell \ell'$, inducing cLFV rates.

$$\frac{\mathscr{B}(\tau \to \mu \gamma)}{\mathscr{B}(\tau \to \mu \nu \bar{\nu})} = \frac{48\pi^3 \alpha}{G_F^2} \left(|A_L|^2 + |A_R|^2 \right)$$

For 2-loop, see Chang, Hou, Keung, PRD'93

Few noteworthy points:

Cancellation between *top* 2-loop and *W* 2-loop contribution Cancellation between *CP-odd* and *CP-even* contributions @1-loop

$\tau ightarrow \mu \gamma$ in g2HDM

Red: variation due to m_H ; **Blue:** for m_A with $|m_H - m_A| = 5, 100, 200 \text{ GeV}$

Probing phase of ρ_{tt}

Large c_{γ} implies enhanced interference

9

$\mu \rightarrow e\gamma$ in g2HDM

Key takeaways:

BSM-benchmark implies $\rho_{\mu e} \leq \lambda_e/3$

h-benchmark standalone implies $\rho_{\mu e} \leq 2\lambda_e$

 $h \rightarrow \mu e$, unlike $h \rightarrow \tau \mu$ case, does not provide stringent bound

Leptonic decays : $\ell \to \ell' \ell' \ell'$

 $\tau \rightarrow \mu \mu \mu, \, \mu \rightarrow e e e$

There are contributions at tree-level itself

But highly **suppressed** in view of small $\rho_{\ell\ell'}$

But $\ell \to \ell' \gamma$ dipole can generate $\ell \to \ell' \ell' \ell'$:

$$\frac{\mathscr{B}(\ell \to 3\ell')}{\mathscr{B}(\ell \to \ell'\gamma)} \simeq \frac{\alpha}{3\pi} \left[\log\left(\frac{m_{\ell}^2}{m_{\ell'}^2}\right) - \frac{11}{4} \right]$$

~ 0.0063 for $\mu \rightarrow e$ ~ 0.0023 for $\tau \rightarrow \mu$

$\mu - e$ Conversion in Nuclei

We use gold nuclei as target

Unlike $\mu \rightarrow e\gamma$, no cancellation between H and A contribution Dipole dominates but tree-level effects are important as well

Short Summary

a digression...

Muon g-2: $a_{\mu}^{\exp} - a_{\mu}^{SM} = (251 \pm 59) \times 10^{-11} \sim 4.2\sigma$ tension

Fermilab Muon g-2 exp., 2104.03281, Aoyama et al, 2006.04822

Can be explained with large flavor-violating coupling $\rho_{\tau\mu}$

known mechanism, $\rho_{\tau\mu} \sim 20 \lambda_{\tau}$ with $c_{\gamma} \rightarrow 0$, $m_A - m_H \neq 0$

$$\tau \rightarrow \mu \gamma$$
 : large $\rho_{\tau \mu} \rightarrow$ small ρ_{tt}

collider searches $\phi \rightarrow \tau \mu$ provide better probes CMS JHEP 03, 103 (2020)

Muon (g-2): 2-loop with top coupling in conflict with collider search $\phi \to \mu\mu$

CMS, PLB 798 (2019) ATLAS, JHEP 07, 117 (2019)

 $\rho_{\mu\tau}$

ann

WS Hou, R. Jain, C. Kao, GK, T. Modak, *in preparation*¹⁴

Summary

We have explored cLFV phenomena in g2HDM.

Alignment plus mass-mixing hierarchy can explain why extra Yukawa effects are *well-hidden*.

Two-loop mechanism induced by ρ_{tt} , naturally $\mathcal{O}(1)$, can enhance cLFV processes easily.

There are potential prospects for $\tau \rightarrow \mu \gamma$ discovery at Belle-II, while $\mu \rightarrow e \gamma$ and $\mu N - e N$ are also promising.

Within g2HDM with our assumptions for extra Yukawa, LFV B-decays are unlikely to reach current sensitivity

Scalar Potential

$$\begin{split} V(\Phi, \Phi') &= \mu_{11}^2 |\Phi|^2 + \mu_{22}^2 |\Phi'|^2 - \left(\mu_{12}^2 \Phi^{\dagger} \Phi' + \text{h.c.}\right) \\ &+ \frac{\eta_1}{2} |\Phi|^4 + \frac{\eta_2}{2} |\Phi'|^4 + \eta_3 |\Phi|^2 |\Phi'|^2 + \eta_4 |\Phi^{\dagger} \Phi'|^2 \\ &+ \left\{ \frac{\eta_5}{2} \left(\Phi^{\dagger} \Phi'\right)^2 + \left[\eta_6 |\Phi|^2 + \eta_7 |\Phi'|^2\right] \Phi^{\dagger} \Phi' + \text{h.c.} \right\}. \end{split}$$

Relation between scalar masses and potential parameters

$$\begin{split} m_{H+}^2 &= \mu_{22}^2 + \frac{v^2}{2} \eta_3 \,, \\ m_A^2 - m_{H+}^2 &= -\frac{v^2}{2} \left(\eta_5 - \eta_4 \right) \,, \\ m_H^2 + m_h^2 - m_A^2 &= + v^2 \left(\eta_1 + \eta_5 \right) \,, \\ \left(m_H^2 - m_h^2 \right)^2 &= \left[m_A^2 + \left(\eta_5 - \eta_1 \right) v^2 \right]^2 + 4 \eta_6^2 v^4 \,, \\ \sin(2\gamma) &= -\frac{2 \eta_6 v^2}{m_H^2 - m_h^2} \,. \end{split}$$

$b \rightarrow s\ell\ell$ anomalies

$b \rightarrow c \ell \nu$ anomalies

Also, ~2 σ deviation in $B_c^+ \to J/\psi \tau^+ \nu$ $R_{J/\psi} = 0.71 \pm 0.17 \pm 0.18$ LHCb, PRL 120, 121801 (2018)

Lepton Flavor Violating signatures

Charged current anomalies prefers NP model favouring 3rd generation leptons; general prediction of large rates for $b \rightarrow s(d)\tau\tau$ modes

Popular NP models (eg. leptoquark models) also predict large rates for LFV *B*-decay such as $B_s \rightarrow \tau \mu$, $B \rightarrow K(K^*)\tau \mu$

For example, see Cornella et al, *JHEP* 07 (2019) 168 Bordone et al , *JHEP* 10 (2018) 148

Current exp. bounds and future prospects

Decay Mode	Current bound	Future sensitivity
$B_s \to \tau \tau$	$5.2 \times 10^{-3} \text{ (LHCb)}$	$\sim 8 \times 10^{-4} \text{ (Belle II, 5 ab}^{-1} \text{)}$
		$\sim 5 \times 10^{-4}$ (LHCb Phase II)
$B_d \to \tau \tau$	$1.6 \times 10^{-3} (LHCb)$	$\sim 1 \times 10^{-4}$ (Belle II)
$B \to K \tau \tau$	$2.3 imes 10^{-3}$ (BaBar)	$\sim 2 \times 10^{-5}$ (Belle II)
$B_s \to \tau \mu$	$3.4 \times 10^{-5} \text{ (LHCb)}$	[Not yet publicized]
$B_d \to \tau \mu$	$1.2 \times 10^{-5} \; (LHCb)$	1.3×10^{-6} (Belle II))
		3×10^{-6} (LHCb Phase II)
$B \to K \tau \mu$	$2.8 imes 10^{-5} ext{ (BaBar)}$	$\sim 3 \times 10^{-6}$ (Belle II)
	$3.9 \times 10^{-5} \text{ (LHCb)}$	[LHCb competitive]
$B_s \rightarrow \mu e$	$5.4 \times 10^{-9} \text{ (LHCb)}$	3×10^{-10} (LHCb Phase II)
$B_d \rightarrow \mu e$	$1.0 \times 10^{-9} \text{ (LHCb)}$	9×10^{-11} (LHCb Phase II)
$B \to K \mu e$	6.4×10^{-9} (LHCb)	$\sim 6 \times 10^{-10}$ (LHCb Phase II)
$B_s \to \mu\mu$	$(3.0 \pm 0.4) \times 10^{-9} \text{ (PDG)}$	$\sim 4.4\% \text{ (LHCb (300 fb^{-1}))}$
$B_d o \mu \mu$	$(1.1^{+1.4}_{-1.3}) \times 10^{-10}$	$\sim 9.4\% \text{ (LHCb (300 fb^{-1}))}$
$B \to \tau \nu$	$(1.1 \pm 0.2) \times 10^{-4} \text{ (PDG)}$	$\sim 5\%$ (Belle II)
$B \rightarrow \mu \nu$	$(5.3 \pm 2.2) \times 10^{-7}$ (Belle)	$\sim 7\%~({ m stat})~({ m Belle~II})$

$B_s \to (K, K^*) \ell \ell' \text{ decays}$

$B_s \to (K, K^*) \ell \ell' \text{ decays}$

- depends on up-type extra Yukawas
- puts stringent bounds on ho_{tt}
- only flavor conserved contribution

- suppressed contribution due to small $\rho_{\ell\ell'}$

 $B_{s,d} - \bar{B}_{s,d}$ mixing

