Extracting Dark-Matter Velocities from Halo Masses: A Reconstruction Conjecture

Fei Huang

ITP CAS and UC Irvine

arXiv: 2001.02193, 2101.10337

in collaboration with

Keith Dienes, Jeff Kost, Kevin Manogue, Shufang Su, Brooks Thomas

05/19/2021

Basic idea...

arXiv: 2001.02193

DM velocity
$$v \longrightarrow Wavenumber$$

 $k \rightarrow k_{hor} \sim 1/d_{hor}(v)$
Distribution in k-space
 $g(v) \rightarrow \tilde{g}(k)$
The slope of
 $T^{2}(k) \equiv P(k)/P_{CDM}(k)$
is related to the "hot-fraction function"
 $F(k) \equiv \frac{\int_{-\infty}^{\log k} \tilde{g}(k') d\log k'}{\int_{-\infty}^{\infty} \tilde{g}(k') d\log k'}$
 $T^{2}(k) = h(k)/P_{CDM}(k)$
 $F(k) = \frac{\int_{-\infty}^{\log k} \tilde{g}(k') d\log k'}{\int_{-\infty}^{\infty} \tilde{g}(k') d\log k'}$

DM velocity
$$v \rightarrow k_{hor} \sim 1/d_{hor}(v)$$

Uistribution in k-space
 $g(v) \rightarrow \tilde{g}(k)$
The slope of
 $T^{2}(k) \equiv P(k)/P_{CDM}(k)$
is related to the "hot-fraction function"
 $F(k) \equiv \frac{\int_{-\infty}^{\log k} \tilde{g}(k') d\log k'}{\int_{-\infty}^{\infty} \tilde{g}(k') d\log k'}$
 $F(k) = \frac{\int_{-\infty}^{\log k} \tilde{g}(k') d\log k'}{\int_{-\infty}^{\infty} \tilde{g}(k') d\log k'}$
 $K = \frac{\int_{-\infty}^{\log k} \tilde{g}(k') d\log k'}{\int_{-\infty}^{\infty} \tilde{g}(k') d\log k'}$

DM velocity
$$v \rightarrow k_{hor} \sim 1/d_{hor}(v)$$

 $k \rightarrow k_{hor} \sim 1/d_{hor}(v)$
Distribution in k-space
 $g(v) \rightarrow \tilde{g}(k)$
The slope of
 $T^{2}(k) \equiv P(k)/P_{CDM}(k)$
is related to the "hot-fraction function"
 $F(k) \equiv \frac{\int_{-\infty}^{\log k} \tilde{g}(k') d\log k'}{\int_{-\infty}^{\infty} \tilde{g}(k') d\log k'}$
 $F(k) = \frac{\int_{-\infty}^{\log k} \tilde{g}(k') d\log k'}{\int_{-\infty}^{\infty} \tilde{g}(k') d\log k'}$

DM velocity
$$v \rightarrow k_{hor} \sim 1/d_{hor}(v)$$

Wavenumber
 $k \rightarrow k_{hor} \sim 1/d_{hor}(v)$
Distribution in k-space
 $g(v) \rightarrow \tilde{g}(k)$
The slope of
 $T^{2}(k) \equiv P(k)/P_{CDM}(k)$
is related to the "hot-fraction function"
 $F(k) \equiv \frac{\int_{-\infty}^{\log k} \tilde{g}(k') d\log k'}{\int_{-\infty}^{\infty} \tilde{g}(k') d\log k'}$
 $T^{2}(k) = \frac{\int_{-\infty}^{\log k} \tilde{g}(k') d\log k'}{\int_{-\infty}^{\infty} \tilde{g}(k') d\log k'}$

Linear regime: Reconstruction Conjecture

Reconstruct the phase-space distribution $\tilde{g}(k)$ directly from the transfer function $T^2(k)$

$$\frac{\widetilde{g}(k)}{\mathcal{N}} \approx \frac{1}{2} \left(\frac{9}{16} + \left| \frac{d \log T^2}{d \log k} \right| \right)^{-1/2} \left| \frac{d^2 \log T^2}{(d \log k)^2} \right|$$

Linear regime: Reconstruction Conjecture

Reconstruct the phase-space distribution $\tilde{g}(k)$ directly from the transfer function $T^2(k)$

$$\frac{\widetilde{g}(k)}{\mathcal{N}} \approx \frac{1}{2} \left(\frac{9}{16} + \left| \frac{d \log T^2}{d \log k} \right| \right)^{-1/2} \left| \frac{d^2 \log T^2}{(d \log k)^2} \right|$$

To what extent can we "<u>resurrect</u>" the DM phasespace distribution from the transfer function?

Blue: original DM distribution in k-space **Red**: reconstruction directly from $T^2(k)$

Archaeological reconstruction is surprisingly accurate for a <u>variety</u> of possible DM distributions. Able to resurrect the <u>salient features</u> of the original distribution!

arXiv: 2101.10337

One step further: How about the *nonlinear* regime?

In the nonlinear regime, density perturbations $\delta > 1$.

Overdense regions *collapse and* form *dark-matter halos.*

In the nonlinear regime, density perturbations $\delta > 1$.

Overdense regions *collapse and* form *dark-matter halos.*

If DM particles have non-negligible velocities, DM halos forming from regions of size R would be **suppressed** by DM particles with $k_{hor}^{-1}(v) \gtrsim R$

Fraction of DM number density -1 which free-streams at k

In the nonlinear regime, density perturbations $\delta > 1$.

Overdense regions *collapse and* form *dark-matter halos.*

If DM particles have non-negligible velocities, DM halos forming from regions of size R would be *suppressed* by DM particles with $k_{hor}^{-1}(v) \gtrsim R$

Fraction of DM number density which free-streams at k

In the nonlinear regime, density perturbations $\delta > 1$.

Overdense regions *collapse and* form *dark-matter halos.*

If DM particles have non-negligible velocities, DM halos forming from regions of size R would be *suppressed* by DM particles with $k_{hor}^{-1}(v) \gtrsim R$

Fraction of DM number density which free-streams at k

In the nonlinear regime, density perturbations $\delta > 1$.

Overdense regions *collapse and* form *dark-matter halos.*

If DM particles have non-negligible velocities, DM halos forming from regions of size R would be *suppressed* by DM particles with $k_{hor}^{-1}(v) \gtrsim R$

Fraction of DM number density which free-streams at k

In the nonlinear regime, density perturbations $\delta > 1$.

Overdense regions *collapse and* form *dark-matter halos.*

If DM particles have non-negligible velocities, DM halos forming from regions of size R would be **suppressed** by DM particles with $k_{hor}^{-1}(v) \gtrsim R$ Fraction of DM number density which free-streams at k

Naturally led to think about the *halo mass function, dn/d log M*, *i.e.*, comoving number density of halos in a logarithmic mass interval

Press-Schechter formalism

- Spherical collapse model: <u>linearly</u> extrapolate $\delta(\vec{x}, t)$, regions have collapsed and formed DM haloes by time t if
- $\delta(\vec{x}, t) > \delta_c \approx 1.686$ * Probability that $\delta_M > \delta_c$ proportional to fraction of halos with mass > M: $\mathcal{P}(m > M, t) = 2\mathcal{P}(\delta_M > \delta_c, t, M)$
- ✤ Gaussian:

$$\mathcal{P}(\delta_M > \delta_c, t, M) = \int_{\delta_c}^{\infty} d\delta_M \frac{1}{\sqrt{2\pi\sigma^2(t, M)}} \exp\left[-\frac{\delta_M^2}{2\sigma^2(t, M)}\right] \qquad \sigma^2 \equiv \int \frac{\alpha \pi}{(2\pi)^3} P(k) W^2(k, R)$$

 $\int d^3k$

Relating DM velocity v and the halo mass M

Recall the functional map $v \to k$

 $k \rightarrow k_{\text{hor}}(\boldsymbol{v}) \sim 1/d_{hor}(\boldsymbol{v})$

Minimum scale k that DM particles with v can suppress.

In the Press-Schechter formalism $M = \bar{\rho} \times \frac{4\pi}{3} (c_W R)^3$ $W(k, R) = \Theta(1 - kR)$

tells us the *maximum* halo mass that density perturbations k could have effect on is $M \sim \bar{\rho} \times k^{-3}$. Let us instead take this threshold relation as defining a functional map $k \rightarrow M$

$$M(k) \equiv \bar{\rho} \times \frac{4\pi}{3} \left(\frac{c_W}{k}\right)^3$$

Together, we define a functional map $\nu \to M$

Maximum M that DM particles with v can suppress

 $g(v) \to g_M(M)$

Distribution in the *M*-space!

Can be plotted together with the halo mass function to investigate their relations!

Analogous to the transfer function, we define the *structure-suppression function*

$$S(M) \equiv \sqrt{\frac{dn/d\log M}{(dn/d\log M)_{CDM}}}$$

Analogous to the transfer function, we define the *structure-suppression function*

$$S(M) \equiv \sqrt{\frac{dn/d\log M}{(dn/d\log M)_{CDM}}}$$

Hot-fraction function in the **M**-space:

 $F(M) \equiv \frac{\int_{\log M}^{\infty} d\log M' g_M(M')}{\int_{-\infty}^{\infty} d\log M' g_M(M')}$

Analogous to the transfer function, we define the *structure-suppression function*

$$S(M) \equiv \sqrt{\frac{dn/d\log M}{(dn/d\log M)_{CDM}}}$$

Hot-fraction function in the **M**-space:

 $F(M) \equiv \frac{\int_{\log M}^{\infty} d \log M' g_M(M')}{\int_{-\infty}^{\infty} d \log M' g_M(M')}$

Analogous to the transfer function, we define the *structure-suppression function*

$$S(M) \equiv \sqrt{\frac{dn/d\log M}{(dn/d\log M)_{CDM}}}$$

Hot-fraction function in the **M**-space:

 $F(M) \equiv \frac{\int_{\log M}^{\infty} d \log M' g_M(M')}{\int_{-\infty}^{\infty} d \log M' g_M(M')}$

Analogous to the transfer function, we define the *structure-suppression function*

$$S(M) \equiv \sqrt{\frac{dn/d\log M}{(dn/d\log M)_{CDM}}}$$

Hot-fraction function in the **M**-space:

 $F(M) \equiv \frac{\int_{\log M}^{\infty} d \log M' g_M(M')}{\int_{-\infty}^{\infty} d \log M' g_M(M')}$

Analogous to the transfer function, we define the *structure-suppression function*

$$S(M) \equiv \sqrt{\frac{dn/d\log M}{(dn/d\log M)_{CDM}}}$$

Hot-fraction function in the **M**-space:

 $F(M) \equiv \frac{\int_{\log M}^{\infty} d \log M' g_M(M')}{\int_{-\infty}^{\infty} d \log M' g_M(M')}$

Non-linear regime: Reconstruction Conjecture

With
$$\frac{d \log S^2(M)}{d \log M} \approx \frac{7}{10} F^2(M)$$

and $\frac{dF}{d \log M} = \frac{g_M(M)}{\mathcal{N}}$

take derivatives on both sides and find

	г <u> </u>		1	
$g_M(M) \sim$	5	$\left(d \log S^2(M) \right)$	2	$d^2 \log S^2(M)$
$\overline{\mathcal{N}}^{\sim} \sim \sqrt{2}$	14	$\left(\frac{d \log M}{d} \right)$		$(d \log M)^2$

This allows us to **reconstruct** the DM phasespace distribution **directly** from $S^2(M)$!

Non-linear regime: Reconstruction Conjecture

With
$$\frac{d \log S^2(M)}{d \log M} \approx \frac{7}{10} F^2(M)$$

and $\frac{dF}{d \log M} = \frac{g_M(M)}{N}$

take derivatives on both sides and find

			1	
$g_M(M)$	5	$(d \log S^2(M))$	2	$d^2 \log S^2(M)$
$\frac{\partial M(\gamma)}{\mathcal{N}} \approx$	$\frac{1}{14}$	$\left(\frac{-\frac{1}{d \log M}}{d \log M}\right)$		$\frac{0}{(d \log M)^2}$
√ √	T I			

This allows us to **reconstruct** the DM phasespace distribution **directly** from $S^2(M)$!

<u>Blue</u>: original DM distribution in M-space <u>Green</u>: reconstruction directly from $S^2(M)$

Once again, able to resurrect the <u>salient</u> <u>features</u> of the original distribution!

10

Conclusions

- <u>Identifiable patterns</u> in the phase-space distribution g(v) of dark matter are <u>imprinted</u> on the cosmic structure even in the non-linear regime.
- The DM phase-space distribution g(v) is <u>correlated</u> with the halo mass function $dn/d\log M$ through the <u>hot-fraction function</u> F(M).
- We proposed a <u>reconstruction conjecture</u> in the nonlinear regime which enables us to reproduce g(v). The reconstruction conjecture is simple and allows us to <u>resurrect the salient features</u> of the phase-space distribution directly from $dn/d\log M$.
- Such approaches allow us to learn about dark-sector dynamics even <u>if the dark sector has only</u> gravitational couplings to the SM.
- There are recent efforts aimed at probing $dn/d\log M$ observationally. Our work provides motivation to probe $dn/d\log M$ with increased precision.