Extracting Dark-Matter Velocities from Halo Masses: A Reconstruction Conjecture

Fei Huang

ITP CAS and UC Irvine

arXiv: [2001.02193,](https://arxiv.org/abs/2001.02193) [2101.10337](https://arxiv.org/abs/2101.10337)

in collaboration with

Keith Dienes, Jeff Kost, Kevin Manogue, Shufang Su, Brooks Thomas

05/19/2021

1

Basic idea…

arXiv: [2001.02193](https://arxiv.org/abs/2001.02193)

DM velocity v	Wavenumber
$k \rightarrow k_{hor} \sim 1/d_{hor}(v)$	1.2
Distribution in k -space	0.1
$g(v) \rightarrow \tilde{g}(k)$	0.01
$T^2(k) \equiv P(k)/P_{CDM}(k)$	0.01
$T^2(k) \equiv P(k)/P_{CDM}(k)$	0.01
$T^2(k) \equiv P(k)/P_{CDM}(k)$	0.4
$F(k) \equiv \frac{\int_{-\infty}^{\log k} \tilde{g}(k') d \log k'}{\int_{-\infty}^{\infty} \tilde{g}(k') d \log k'}$	10^{-5}

DM velocity v	Wavenumber	
$k \rightarrow k_{hor} \sim 1/d_{hor}(v)$	1	
Distribution in k -space	0.1	
$g(v) \rightarrow \tilde{g}(k)$	0.01	
$T^2(k) \equiv P(k)/P_{CDM}(k)$	$\sum_{k=1}^{\infty} 0.01$	$\sum_{k=1}^{\infty} 0.01$
$T^2(k) \equiv P(k)/P_{CDM}(k)$	$\sum_{k=1}^{\infty} 10^{-3}$	$\sum_{k=1}^{\infty} 10^{-3}$
$F(k) \equiv \frac{\int_{-\infty}^{\log k} \tilde{g}(k') d \log k'}{\int_{-\infty}^{\infty} \tilde{g}(k') d \log k'}$	10^{-5}	

DM velocity v	Wavenumber
$k \rightarrow k_{hor} \sim 1/d_{hor}(v)$	1.2
Distribution in k -space	0.1
$g(v) \rightarrow \tilde{g}(k)$	0.01
The slope of $T^2(k) \equiv P(k)/P_{CDM}(k)$	0.01
$T^2(k) \equiv P(k)/P_{CDM}(k)$	0.8
0.4	0.4
$F(k) \equiv \frac{\int_{-\infty}^{\log k} \tilde{g}(k') d \log k'}{\int_{-\infty}^{\infty} \tilde{g}(k') d \log k'}$	10^{-5}

DM velocity v	Wavenumber
$k \rightarrow k_{hor} \sim 1/d_{hor}(v)$	1.2
Distribution in k -space	0.1
$g(v) \rightarrow \tilde{g}(k)$	0.01
$T^2(k) \equiv P(k)/P_{CDM}(k)$	$W_{DCM}(k)$
$T^2(k) \equiv P(k)/P_{CDM}(k)$	$W_{DCM}(k)$
$W_{DCM}(k) \rightarrow W_{DCM}(k)$	<math< td=""></math<>

Linear regime: Reconstruction Conjecture

Reconstruct the phase-space distribution $\tilde{g}(k)$ directly from the transfer function $T^2(k)$

$$
\frac{\widetilde{g}(k)}{\mathcal{N}} \;\approx\; \frac{1}{2}\,\left(\frac{9}{16} + \left|\frac{d\log T^2}{d\log k}\right|\right)^{-1/2} \left|\frac{d^2\log T^2}{(d\log k)^2}\right|
$$

Linear regime: Reconstruction Conjecture

Reconstruct the phase-space distribution $\tilde{g}(k)$ directly from the transfer function $T^2(k)$

$$
\frac{\widetilde{g}(k)}{\mathcal{N}} \,\,\approx\,\,\frac{1}{2}\,\left(\frac{9}{16} + \left|\frac{d\log T^2}{d\log k}\right|\right)^{-1/2}\bigg|\frac{d^2\log T^2}{(d\log k)^2}
$$

To what extent can we "*resurrect*" the DM phasespace distribution from the transfer function?

Blue : original DM distribution in k-space **Red**: reconstruction directly from $T^2(k)$

Archaeological reconstruction is surprisingly accurate for a **variety** of possible DM distributions. Able to resurrect the **salient features** of the original distribution!

arXiv: [2101.10337](https://arxiv.org/abs/2101.10337)

One step further: How about the *nonlinear* **regime?**

In the nonlinear regime, density perturbations $\delta > 1$.

Overdense regions *collapse and* form *dark-matter halos.*

What happens in the nonlinear regime? $R \sim k^{-1}$

In the nonlinear regime, density perturbations $\delta > 1$.

Overdense regions *collapse and* form *dark-matter halos.*

If DM particles have non-negligible velocities, DM halos forming from regions of size would be *suppressed* by DM particles with $k_{hor}^{-1}(\nu) \gtrsim R$

Fraction of DM number density which free-streams at k

Fraction of DM number density which free-streams at k

In the nonlinear regime, density perturbations $\delta > 1$.

Overdense regions *collapse and* form *dark-matter halos.*

If DM particles have non-negligible velocities, DM halos forming from regions of size would be *suppressed* by DM particles with $k_{hor}^{-1}(\nu) \gtrsim R$

In the nonlinear regime, density perturbations $\delta > 1$.

Overdense regions *collapse and* form *dark-matter halos.*

If DM particles have non-negligible velocities, DM halos forming from regions of size would be *suppressed* by DM particles with $k_{hor}^{-1}(\nu) \gtrsim R$

Fraction of DM number density which free-streams at k

In the nonlinear regime, density perturbations $\delta > 1$.

Overdense regions *collapse and* form *dark-matter halos.*

If DM particles have non-negligible velocities, DM halos forming from regions of size would be *suppressed* by DM particles with $k_{hor}^{-1}(\nu) \gtrsim R$

Fraction of DM number density which free-streams at k

In the nonlinear regime, density perturbations $\delta > 1$.

Overdense regions *collapse and* form *dark-matter halos.*

If DM particles have non-negligible velocities, DM halos forming from regions of size would be *suppressed* by DM particles with $k_{hor}^{-1}(\nu) \gtrsim R$

Fraction of DM number density which free-streams at k

Naturally led to think about the **halo mass function,** $dn/d \log M$, *i.e.*, comoving number density of halos in a logarithmic mass interval

Press-Schechter formalism

- \dots Spherical collapse model: *linearly* extrapolate $\delta(\vec{x}, t)$, regions have collapsed and formed DM haloes by time t if
- $\delta(\vec{x}, t) > \delta_c \approx 1.686$ $\mathbf{\hat{v}}$ Probability that $\delta_M > \delta_c$ proportional to fraction of halos with mass $> M$: $\mathcal{P}(m > M, t) = 2 \mathcal{P}(\delta_M > \delta_c, t, M)$ $\sigma^2 \equiv \int \frac{d^3k}{\sqrt{2}}$ ❖ Gaussian: $\frac{a^{n} k}{(2\pi)^3} P(k) W^2(k, R)$ $\frac{1}{2\pi\sigma^2(t, M)} \exp\left[-\frac{\delta_M^2}{2\sigma^2(t, M)}\right]$ $\overset{\infty}{d\delta_M}$ $\mathcal{P}(\delta_M > \delta_c, t, M) = \int_{\delta_c}$ $2\sigma^2(t, M)$ $|\delta_{\sf lin}|$ With these simple ingredients $W(k, R) = \Theta(1 - kR)$ dn $\rho_0(t)$ $\partial \mathcal{P}(m > M, t)$ sensitive to the shape of $P(k)$ = rather than that of $W(k, R)$ dM \overline{M} ∂M which can be related to $P(k)$ δ_c $P(1/R(M$ dn $\bar{\rho}$ = $\frac{P}{12\pi^2M}\nu(M)\eta(M)$ \overline{M} \overline{M} $\overline{\delta_c^2 R^3(M)}$ $d \log M$ **CLASS PS** $g(v) \xrightarrow{\text{CLASS}} P(k) \xrightarrow{\text{PS}} \frac{dn}{d \log n}$ 4π $\frac{m}{3} (c_W R)^3$ $M = \overline{\rho}$ $d \log M$ $\delta_M \equiv \delta(\vec{x},\vec{\kappa}) = \int d^3x \ \delta(\vec{x}') W(\vec{x}-\vec{x}',\vec{\kappa})$ **Inversion possible?** $\delta(\vec{k}, \vec{k}) = \delta(\vec{k}) W(k, \vec{k})$ 7

Relating DM velocity v and the halo mass M

Recall the functional map $v \to k$

 $k \rightarrow k_{\text{hor}}(\nu) \sim 1/d_{\text{hor}}(\nu)$

Minimum scale k that DM particles with ν can suppress.

 $M = \bar{\rho} \times$ 4π $\frac{1}{3} (c_W R)^3$ $W(k, R) = \Theta(1 - kR)$ In the Press-Schechter formalism

tells us the *maximum* halo mass that density perturbations k could have effect on is $M \sim \bar{\rho} \times k^{-3}$.

Let us instead take this threshold relation as defining a functional map $k \to M$

$$
M(k) \equiv \bar{\rho} \times \frac{4\pi}{3} \left(\frac{c_W}{k}\right)^3
$$

Together, we define a functional map $v \to M$

Maximum M that DM particles with ν can suppress

 $g(v) \rightarrow g_M(M)$

Distribution in the M-space!

Can be plotted together with the halo mass function to investigate their relations!

Analogous to the transfer function, we define the *structure-suppression function*

$$
S(M) \equiv \sqrt{\frac{dn/d \log M}{(dn/d \log M)_{CDM}}}
$$

Analogous to the transfer function, we define the *structure -suppression function*

$$
S(M) \equiv \sqrt{\frac{dn/d \log M}{(dn/d \log M)_{CDM}}}
$$

Hot-fraction function in the M -space :

 $F(M) \equiv$ $\int_{\log M}^{\infty}$ $\overline{\infty}$ $d \log M' g_M(M')$ $\int_{-\infty}^{\infty}$ $d \log M' g_M(M')$

Analogous to the transfer function, we define the *structure -suppression function*

$$
S(M) \equiv \sqrt{\frac{dn/d \log M}{(dn/d \log M)_{CDM}}}
$$

Hot-fraction function in the M -space :

 $F(M) \equiv$ $\int_{\log M}^{\infty}$ $\overline{\infty}$ $d \log M' g_M(M')$ $\int_{-\infty}^{\infty}$ $d \log M' g_M(M')$

Analogous to the transfer function, we define the *structure -suppression function*

$$
S(M) \equiv \sqrt{\frac{dn/d \log M}{(dn/d \log M)_{CDM}}}
$$

Hot-fraction function in the M -space :

 $F(M) \equiv$ $\int_{\log M}^{\infty}$ $\overline{\infty}$ $d \log M' g_M(M')$ $\int_{-\infty}^{\infty}$ $d \log M' g_M(M')$

Analogous to the transfer function, we define the *structure -suppression function*

$$
S(M) \equiv \sqrt{\frac{dn/d \log M}{(dn/d \log M)_{CDM}}}
$$

Hot-fraction function in the M -space :

 $F(M) \equiv$ $\int_{\log M}^{\infty}$ $\overline{\infty}$ $d \log M' g_M(M')$ $\int_{-\infty}^{\infty}$ $d \log M' g_M(M')$

Analogous to the transfer function, we define the *structure-suppression function*

$$
S(M) \equiv \sqrt{\frac{dn/d \log M}{(dn/d \log M)_{CDM}}}
$$

Hot-fraction function in the M-space:

 $F(M) \equiv$ $\int_{\log M}^{\infty}$ $\overline{\circ}$ and $\log M' g_M(M')$ $\int_{-\infty}^{\infty}$ $\int_{-\infty}^{\infty} d \log M' g_M(M')$

Non-linear regime: Reconstruction Conjecture

With
$$
\frac{d \log S^2(M)}{d \log M} \approx \frac{7}{10} F^2(M)
$$

and
$$
\frac{dF}{d \log M} = \frac{g_M(M)}{N}
$$

take derivatives on both sides and find

This allows us to *reconstruct* the DM phasespace distribution *directly* from $S^2(M)!$

Non -linear regime: Reconstruction Conjecture

With
$$
\frac{d \log S^2(M)}{d \log M} \approx \frac{7}{10} F^2(M)
$$

and
$$
\frac{dF}{d \log M} = \frac{g_M(M)}{N}
$$

take derivatives on both sides and find

This allows us to *reconstruct* the DM phase space distribution *directly* from $S^2(M)!$

Blue : original DM distribution in M-space **Green**: reconstruction directly from $S^2(M)$

Once again, able to resurrect the **salient features** of the original distribution!

10

Conclusions

- **Identifiable patterns** in the phase-space distribution $g(v)$ of dark matter are *imprinted* on the cosmic structure even in the non-linear regime.
- The DM phase-space distribution $g(v)$ is **correlated** with the halo mass function $dn/dlog M$ through the *hot-fraction function* $F(M)$.
- We proposed a *reconstruction conjecture* in the nonlinear regime which enables us to reproduce (). The reconstruction conjecture is simple and allows us to *resurrect the salient features* of the phase-space distribution directly from $dn/dlog M$.
- Such approaches allow us to learn about dark-sector dynamics even *if the dark sector has only gravitational couplings to the SM*.
- There are recent efforts aimed at probing $dn/d\log M$ observationally. Our work provides motivation to probe $dn/d\log M$ with increased precision.